主要研究了扩展有限元法(extended finite element method,XFEM)在处理弱不连续问题时不同改进函数形式对XFEM数值求解精度的影响,阐述了各种改进函数影响XFEM求解精度的关键因素,指出校正的扩展有限元法(corrected-XFEM)能够提高数值...主要研究了扩展有限元法(extended finite element method,XFEM)在处理弱不连续问题时不同改进函数形式对XFEM数值求解精度的影响,阐述了各种改进函数影响XFEM求解精度的关键因素,指出校正的扩展有限元法(corrected-XFEM)能够提高数值求解精度的实质在于它拓展了改进结点域,即将常规扩展有限元法(standard-XFEM)的改进结点域增加一层作为corrected-XFEM的改进结点域,文中建议延拓corrected-XFEM的改进结点域,即在corrected-XFEM的改进结点域基础上再增加一层改进结点.利用水平集函数表征材料内部的不连续界面,推导了XFEM求解的支配方程,给出了一种改进单元的数值积分方案以及改进单元处高精度应力的求解方法.含夹杂问题的数值计算结果表明:建议的延拓corrected-XFEM改进结点域的方法能够明显提高XFEM的数值求解精度.展开更多
The roughness of the model function f(x) to the basis functions has been identified. When the model function is continuous segment, its roughness does not depend on the behavior of the first segment, but depends on ...The roughness of the model function f(x) to the basis functions has been identified. When the model function is continuous segment, its roughness does not depend on the behavior of the first segment, but depends on "h", the shift in the slope of two consecutive segments. If the distribution of design is uniform, f(x) is continuous segment function, and h is constant, then the maximum roughness is h2/192 obtained at the midpoint of the observations. Suppose that we have a sequence of designs {Pn(x)} then its corresponding distribution {Fn (x)} converges weakly to some distribution F(x). Let D(f) be a set of discontinuous points off(x), it is possible to take the limit of the roughness if D(f) has zero (dF)-measure. The behavior of maximum roughness of the discontinuous segment function has been studied by using grid points.展开更多
文摘主要研究了扩展有限元法(extended finite element method,XFEM)在处理弱不连续问题时不同改进函数形式对XFEM数值求解精度的影响,阐述了各种改进函数影响XFEM求解精度的关键因素,指出校正的扩展有限元法(corrected-XFEM)能够提高数值求解精度的实质在于它拓展了改进结点域,即将常规扩展有限元法(standard-XFEM)的改进结点域增加一层作为corrected-XFEM的改进结点域,文中建议延拓corrected-XFEM的改进结点域,即在corrected-XFEM的改进结点域基础上再增加一层改进结点.利用水平集函数表征材料内部的不连续界面,推导了XFEM求解的支配方程,给出了一种改进单元的数值积分方案以及改进单元处高精度应力的求解方法.含夹杂问题的数值计算结果表明:建议的延拓corrected-XFEM改进结点域的方法能够明显提高XFEM的数值求解精度.
文摘The roughness of the model function f(x) to the basis functions has been identified. When the model function is continuous segment, its roughness does not depend on the behavior of the first segment, but depends on "h", the shift in the slope of two consecutive segments. If the distribution of design is uniform, f(x) is continuous segment function, and h is constant, then the maximum roughness is h2/192 obtained at the midpoint of the observations. Suppose that we have a sequence of designs {Pn(x)} then its corresponding distribution {Fn (x)} converges weakly to some distribution F(x). Let D(f) be a set of discontinuous points off(x), it is possible to take the limit of the roughness if D(f) has zero (dF)-measure. The behavior of maximum roughness of the discontinuous segment function has been studied by using grid points.