There must be electromagnetic fields created during high-energy heavy-ion collisions.Although the electromagnetic field may become weak with the evolution of the quark-gluon plasma(QGP),compared to the energy scales o...There must be electromagnetic fields created during high-energy heavy-ion collisions.Although the electromagnetic field may become weak with the evolution of the quark-gluon plasma(QGP),compared to the energy scales of the strong interaction,they are potentially important to some electromagnetic probes.In this work,we propose the coupled effect of the weak magnetic field and the longitudinal dynamics of the background medium for the first time.We demonstrate that the induced photon spectrum can be highly azimuthally anisotropic when the quarkgluon plasma is in the presence of a weak external magnetic field.On the other hand,the weak magnetic photon emission from quark-gluon plasma only leads to a small correction to the photon production rate.After hydrodynamic evolution with a tilted fireball configuration,the experimentally measured direct photon elliptic flow is well reproduced.Meanwhile,the used time-averaged magnetic field in the hydrodynamic stage is found no larger than a few percent of the pion mass square.展开更多
The ground states of the ultracold spin-1 atoms superlattice in a weak magnetic field are obtained. It is shown trapped in a deep one-dimensional double-weU optical that the ground-state diagrams of the reduced double...The ground states of the ultracold spin-1 atoms superlattice in a weak magnetic field are obtained. It is shown trapped in a deep one-dimensional double-weU optical that the ground-state diagrams of the reduced double- well model are remarkably different for the antiferromagnetic and ferromagnetic condensates. The transition between the singlet state and nematic state is observed for the antiferromagnetic interaction atoms, which can be realized by modulating the tunneling parameter or the quadratic Zeeman energy. An experiment to distinguish the different spin states is suggested.展开更多
Electron-positron pair production in a strong laser field enhanced by an assisted high frequency weak field is investigated by solving the quantum Vlasov equation.The average and residual pair number densities are obt...Electron-positron pair production in a strong laser field enhanced by an assisted high frequency weak field is investigated by solving the quantum Vlasov equation.The average and residual pair number densities are obtained for sinusoid electric field and it is found that the high frequency assisted weak field will enhance pair production significantly.There exists an optimal frequency of assisted field that makes the pair production number density get a maximum one,which is a few orders of higher than that without assisted field.We also discuss the other possible assisted fields.展开更多
文摘There must be electromagnetic fields created during high-energy heavy-ion collisions.Although the electromagnetic field may become weak with the evolution of the quark-gluon plasma(QGP),compared to the energy scales of the strong interaction,they are potentially important to some electromagnetic probes.In this work,we propose the coupled effect of the weak magnetic field and the longitudinal dynamics of the background medium for the first time.We demonstrate that the induced photon spectrum can be highly azimuthally anisotropic when the quarkgluon plasma is in the presence of a weak external magnetic field.On the other hand,the weak magnetic photon emission from quark-gluon plasma only leads to a small correction to the photon production rate.After hydrodynamic evolution with a tilted fireball configuration,the experimentally measured direct photon elliptic flow is well reproduced.Meanwhile,the used time-averaged magnetic field in the hydrodynamic stage is found no larger than a few percent of the pion mass square.
基金Supported by the National Natural Science Foundation of China under Grant No.11274095the Program of Innovation Scientists and Technicians Troop Construction Projects in Henan Province under Grant No.114100510021+1 种基金the Natural Science Basic Research Plan in Henan Province of China under Grant No.2011B140010the Innovative Research Team(in Science and Technology)in University of Henan Province under Grant No.2010IRTSTHN002
文摘The ground states of the ultracold spin-1 atoms superlattice in a weak magnetic field are obtained. It is shown trapped in a deep one-dimensional double-weU optical that the ground-state diagrams of the reduced double- well model are remarkably different for the antiferromagnetic and ferromagnetic condensates. The transition between the singlet state and nematic state is observed for the antiferromagnetic interaction atoms, which can be realized by modulating the tunneling parameter or the quadratic Zeeman energy. An experiment to distinguish the different spin states is suggested.
基金Supported by the National Natural Science Foundation of China (NNSFC) under Grant Nos. 11175023,11165014partially by theFundamental Research Funds for the Central Universities (FRFCU)
文摘Electron-positron pair production in a strong laser field enhanced by an assisted high frequency weak field is investigated by solving the quantum Vlasov equation.The average and residual pair number densities are obtained for sinusoid electric field and it is found that the high frequency assisted weak field will enhance pair production significantly.There exists an optimal frequency of assisted field that makes the pair production number density get a maximum one,which is a few orders of higher than that without assisted field.We also discuss the other possible assisted fields.