[Objective] The aim was to review on vulnerability evaluation of grassland ecosystem under climate change.[Method] In the research,vulnerability evaluation methods of ecosystem under climate changes,at home and abroad...[Objective] The aim was to review on vulnerability evaluation of grassland ecosystem under climate change.[Method] In the research,vulnerability evaluation methods of ecosystem under climate changes,at home and abroad,and the related cases and research progress in China were reviewed.In addition,the future of evaluation research was predicted.[Result] Ecosystem vulnerability to climate change is an important part of climate change research.It is necessary and urgent to improve evaluation methods and reduce uncertainty of future vulnerability evaluation to make evaluation more comprehensive and objective.Furthermore,evaluation on effects of human activity on natural ecosystem vulnerability should be highlighted.[Conclusion] The research provided reference for establishment of a new management model for ecosystem adaptability to climate and sustainable development of grasslands in northern China.展开更多
Dry valleys are a striking geographic landscape in Hengduan Mountains Region and are characterized by low rainfall, desert type of vegetation and fragile environment. Past efforts and resources have been concentrated ...Dry valleys are a striking geographic landscape in Hengduan Mountains Region and are characterized by low rainfall, desert type of vegetation and fragile environment. Past efforts and resources have been concentrated mainly on rehabilitation of degraded ecosystem and fragile environment, particularly reforestation, while socio-economic development has been largely overlooked. Despite successes in pocket areas, the overall trend of unsustainability and environmental deterioration are continuing. It is important to understand that uplift of the Tibetan Plateau is the root cause of development of dry valleys, and development and formation of dry valleys is a natural process. Human intervention has played a secondary role in development of dry valleys and degradation of dry valleys though human intervention in many cases has speeded up environmental degradation of the dry valleys. It is important to understand that dry valleys are climatic enclaves and an integrated approach that combines rehabilitation of degraded ecosystems and socio-economic development should be adopted if the overall goal of sustainable development of dry valleys is to be achieved. Promotion of niche-based cash crops, rural energy including hydropower, solar energy, biogas and fuelwood plantation is recommended as the priority activities.展开更多
Consider the following Cauchy problem for the first order quasilinear strictly hy- perbolic system ?u ?u + A(u) = 0, ...Consider the following Cauchy problem for the first order quasilinear strictly hy- perbolic system ?u ?u + A(u) = 0, ?t ?x t = 0 : u = f(x). We let M = sup |f (x)| < +∞. x∈R The main result of this paper is that under the assumption that the system is weakly linearly degenerated, there exists a positive constant ε independent of M, such that the above Cauchy problem admits a unique global C1 solution u = u(t,x) for all t ∈ R, provided that +∞ |f (x)|dx ≤ ε, ?∞ +∞ ε |f(x)|dx ≤ . M∞展开更多
As an essential component of proteins and genetic material for all organisms, nitrogen(N) is one of the major limiting factors that control the dynamics, biodiversity and functioning of lacustrine wetlands, in which i...As an essential component of proteins and genetic material for all organisms, nitrogen(N) is one of the major limiting factors that control the dynamics, biodiversity and functioning of lacustrine wetlands, in which intensified N biogeochemical activities take place. Reactive N loaded into wetland ecosystems has been doubled due to various human activities, including industrial, agricultural activities and urbanization. The main driving mechanisms of N transport and transformation in lacustrine wetlands are categorized to pushing forces and pulling forces in this study. Geomorphology, wetland age, N concentrations, and temperature are the main pushing forces(passive forces); whereas water table variation, oxygen concentration, other elements availability, oxidation-reduction potential(Eh) and p H, and microorganisms are the predominant pulling forces(active forces). The direction and kinetic energy of reactions are determined by pulling forces and then are stimulated by pushing forces. These two types of forces are analyzed and discussed separately. Based on the analysis of driving mechanisms, possible solutions to wetland N pollutions are proposed at individual, regional and global scales, respectively. Additional research needs are addressed to obtain a thorough understanding of N transport and transformations in wetlands and to reduce detrimental impacts of excessive N on such fragile ecosystems.展开更多
基金Supported by National Natural Science Foundation of China(70933004)Fund on Basic Scientific Research Project of Nonprofit Central Research Institutions(1610332012201)Non-profit Special Fund of Ministry of Water Resources(201201008-02)~~
文摘[Objective] The aim was to review on vulnerability evaluation of grassland ecosystem under climate change.[Method] In the research,vulnerability evaluation methods of ecosystem under climate changes,at home and abroad,and the related cases and research progress in China were reviewed.In addition,the future of evaluation research was predicted.[Result] Ecosystem vulnerability to climate change is an important part of climate change research.It is necessary and urgent to improve evaluation methods and reduce uncertainty of future vulnerability evaluation to make evaluation more comprehensive and objective.Furthermore,evaluation on effects of human activity on natural ecosystem vulnerability should be highlighted.[Conclusion] The research provided reference for establishment of a new management model for ecosystem adaptability to climate and sustainable development of grasslands in northern China.
基金supported jointly by the National Key Project for Basic Research on Tibetan Plateau(G1998040800)Promotion Plan of the Ministry of Education and President Foundation of the Chinese Academy of Sciences.
文摘Dry valleys are a striking geographic landscape in Hengduan Mountains Region and are characterized by low rainfall, desert type of vegetation and fragile environment. Past efforts and resources have been concentrated mainly on rehabilitation of degraded ecosystem and fragile environment, particularly reforestation, while socio-economic development has been largely overlooked. Despite successes in pocket areas, the overall trend of unsustainability and environmental deterioration are continuing. It is important to understand that uplift of the Tibetan Plateau is the root cause of development of dry valleys, and development and formation of dry valleys is a natural process. Human intervention has played a secondary role in development of dry valleys and degradation of dry valleys though human intervention in many cases has speeded up environmental degradation of the dry valleys. It is important to understand that dry valleys are climatic enclaves and an integrated approach that combines rehabilitation of degraded ecosystems and socio-economic development should be adopted if the overall goal of sustainable development of dry valleys is to be achieved. Promotion of niche-based cash crops, rural energy including hydropower, solar energy, biogas and fuelwood plantation is recommended as the priority activities.
基金Project supported by the National Natural Science Foundation of China (No.10225102) the 973 Project of the Ministry of Science and Technology of China and the Doctoral Programme Foundation of the Ministry of Education of China.
文摘Consider the following Cauchy problem for the first order quasilinear strictly hy- perbolic system ?u ?u + A(u) = 0, ?t ?x t = 0 : u = f(x). We let M = sup |f (x)| < +∞. x∈R The main result of this paper is that under the assumption that the system is weakly linearly degenerated, there exists a positive constant ε independent of M, such that the above Cauchy problem admits a unique global C1 solution u = u(t,x) for all t ∈ R, provided that +∞ |f (x)|dx ≤ ε, ?∞ +∞ ε |f(x)|dx ≤ . M∞
基金the National Natural Science Foundation of China (Grant No. 41272249)Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20110072110020)
文摘As an essential component of proteins and genetic material for all organisms, nitrogen(N) is one of the major limiting factors that control the dynamics, biodiversity and functioning of lacustrine wetlands, in which intensified N biogeochemical activities take place. Reactive N loaded into wetland ecosystems has been doubled due to various human activities, including industrial, agricultural activities and urbanization. The main driving mechanisms of N transport and transformation in lacustrine wetlands are categorized to pushing forces and pulling forces in this study. Geomorphology, wetland age, N concentrations, and temperature are the main pushing forces(passive forces); whereas water table variation, oxygen concentration, other elements availability, oxidation-reduction potential(Eh) and p H, and microorganisms are the predominant pulling forces(active forces). The direction and kinetic energy of reactions are determined by pulling forces and then are stimulated by pushing forces. These two types of forces are analyzed and discussed separately. Based on the analysis of driving mechanisms, possible solutions to wetland N pollutions are proposed at individual, regional and global scales, respectively. Additional research needs are addressed to obtain a thorough understanding of N transport and transformations in wetlands and to reduce detrimental impacts of excessive N on such fragile ecosystems.