针对在低信噪比、观测点数较少情况下稀疏度的欠估计问题,提出了一种基于贝叶斯预测密度的弱匹配追踪频谱检测算法。该算法利用贝叶斯预测密度理论推导出罚函数,然后引入弱匹配策略于Co Sa MP算法,提高频谱支撑集估计性能,且减弱受稀疏...针对在低信噪比、观测点数较少情况下稀疏度的欠估计问题,提出了一种基于贝叶斯预测密度的弱匹配追踪频谱检测算法。该算法利用贝叶斯预测密度理论推导出罚函数,然后引入弱匹配策略于Co Sa MP算法,提高频谱支撑集估计性能,且减弱受稀疏度估计准确度的影响。仿真结果表明,当信噪比高于3 d B时,利用400个观测样本该算法就能获得90%以上的频谱检测概率,宽带频谱感知性能优于已有算法。展开更多
文摘针对在低信噪比、观测点数较少情况下稀疏度的欠估计问题,提出了一种基于贝叶斯预测密度的弱匹配追踪频谱检测算法。该算法利用贝叶斯预测密度理论推导出罚函数,然后引入弱匹配策略于Co Sa MP算法,提高频谱支撑集估计性能,且减弱受稀疏度估计准确度的影响。仿真结果表明,当信噪比高于3 d B时,利用400个观测样本该算法就能获得90%以上的频谱检测概率,宽带频谱感知性能优于已有算法。