In this paper,we will discuss smoothness of weak solutions for the system of second order differential equations eith non-negative characteristies.First of all,we establish boundary,and interior estimates and then we ...In this paper,we will discuss smoothness of weak solutions for the system of second order differential equations eith non-negative characteristies.First of all,we establish boundary,and interior estimates and then we prove that solutions of regularization problem satisfy Lipschitz condition.展开更多
The aim of this paper is to study the continuity of weak solutions for quasilinear degenerate parabolic equations of the form: μt-△φ(μ) = 0 ,where φ ε C1(R^1) is a strictly monotone increasing function. Cle...The aim of this paper is to study the continuity of weak solutions for quasilinear degenerate parabolic equations of the form: μt-△φ(μ) = 0 ,where φ ε C1(R^1) is a strictly monotone increasing function. Clearly, the above equation has strong degeneracy, i.e., the set of zero points of φ'(.) is permitted to have zero measure. This is an answer to an open problem in [13, p. 288].展开更多
This paper presents several examples of fundamental problems involving weak continuity and compactness for nonlinear partial differential equations, in which compensated compactness and related ideas have played a sig...This paper presents several examples of fundamental problems involving weak continuity and compactness for nonlinear partial differential equations, in which compensated compactness and related ideas have played a significant role. The compactness and convergence of vanishing viscosity solutions for nonlinear hyperbolic conservation laws are first analyzed, including the inviscid limit from the Navier-Stokes equations to the Euler equations for homentropic flow, the vanishing viscosity method to construct the global spherically symmetric solutions to the multidimensional compressible Euler equations, and the sonic-subsonic limit of solutions of the full Euler equations for multi-dimensional steady compressible fluids. Then the weak continuity and rigidity of the Gauss-Codazzi-Ricci system and corresponding isometric embeddings in differential geometry are revealed. Further references are also provided for some recent developments on the weak continuity and compactness for nonlinear partial differential equations.展开更多
文摘In this paper,we will discuss smoothness of weak solutions for the system of second order differential equations eith non-negative characteristies.First of all,we establish boundary,and interior estimates and then we prove that solutions of regularization problem satisfy Lipschitz condition.
基金Project supported by the Teaching and Research Award Fund for Outstanding Young Teachers in Higher Education Institutions of MOE(No.[2000]26)the 973 Project of the Ministry of Science and Technology of China(No.2006CB805902)+1 种基金the National Natural Science Foundation of China(No.10571072)the Key Laboratory of Symbolic Computation and Knowledge Engineering of the Ministry of Education of China and the 985 Project of Jilin University.
文摘The aim of this paper is to study the continuity of weak solutions for quasilinear degenerate parabolic equations of the form: μt-△φ(μ) = 0 ,where φ ε C1(R^1) is a strictly monotone increasing function. Clearly, the above equation has strong degeneracy, i.e., the set of zero points of φ'(.) is permitted to have zero measure. This is an answer to an open problem in [13, p. 288].
基金supported by the UK EPSRC Science and Innovation Award to the Oxford Centre for Nonlinear PDE(No.EP/E035027/1)the UK EPSRC Award to the EPSRC Centre for Doctoral Training in PDEs(No.EP/L015811/1)+1 种基金the National Natural Science Foundation of China(No.10728101)the Royal Society-Wolfson Research Merit Award(UK)
文摘This paper presents several examples of fundamental problems involving weak continuity and compactness for nonlinear partial differential equations, in which compensated compactness and related ideas have played a significant role. The compactness and convergence of vanishing viscosity solutions for nonlinear hyperbolic conservation laws are first analyzed, including the inviscid limit from the Navier-Stokes equations to the Euler equations for homentropic flow, the vanishing viscosity method to construct the global spherically symmetric solutions to the multidimensional compressible Euler equations, and the sonic-subsonic limit of solutions of the full Euler equations for multi-dimensional steady compressible fluids. Then the weak continuity and rigidity of the Gauss-Codazzi-Ricci system and corresponding isometric embeddings in differential geometry are revealed. Further references are also provided for some recent developments on the weak continuity and compactness for nonlinear partial differential equations.