期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于超像素图割的多类别弱标注强化算法
被引量:
3
1
作者
林佳丽
刘秉瀚
《计算机工程与设计》
北大核心
2019年第7期1971-1977,共7页
为解决基于深度学习的图像语义分割逐像素制作语义标签训练集耗时耗力的问题,提出一种便捷的基于超像素图割的多类别弱标注强化算法。在弱标注框内自适应提取超像素,采用交互式涂鸦结合超像素扩充前景背景采样点;根据框内采样点对高斯...
为解决基于深度学习的图像语义分割逐像素制作语义标签训练集耗时耗力的问题,提出一种便捷的基于超像素图割的多类别弱标注强化算法。在弱标注框内自适应提取超像素,采用交互式涂鸦结合超像素扩充前景背景采样点;根据框内采样点对高斯混合模型参数进行初始化;迭代更新参数,使用最小割算法对像素点进行分类,实现像素级强标注。实验结果表明,在保证标注精度的前提下,该方法较传统人工与Grabcut算法在标注上具有较大效率优势,对服装图像重新标注并作为全卷积网络训练集,达到与原始数据集相近的分割精度。
展开更多
关键词
图像语义分割
超像素图割
弱标注强化
多类别
全卷积网络
下载PDF
职称材料
题名
基于超像素图割的多类别弱标注强化算法
被引量:
3
1
作者
林佳丽
刘秉瀚
机构
福州大学数学与计算机科学学院
出处
《计算机工程与设计》
北大核心
2019年第7期1971-1977,共7页
基金
国家自然科学基金项目(61473330)
文摘
为解决基于深度学习的图像语义分割逐像素制作语义标签训练集耗时耗力的问题,提出一种便捷的基于超像素图割的多类别弱标注强化算法。在弱标注框内自适应提取超像素,采用交互式涂鸦结合超像素扩充前景背景采样点;根据框内采样点对高斯混合模型参数进行初始化;迭代更新参数,使用最小割算法对像素点进行分类,实现像素级强标注。实验结果表明,在保证标注精度的前提下,该方法较传统人工与Grabcut算法在标注上具有较大效率优势,对服装图像重新标注并作为全卷积网络训练集,达到与原始数据集相近的分割精度。
关键词
图像语义分割
超像素图割
弱标注强化
多类别
全卷积网络
Keywords
image semantic segmentation
superpixel graph cut
weak labeling enhancement
multiple categories
fully convolutional networks
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于超像素图割的多类别弱标注强化算法
林佳丽
刘秉瀚
《计算机工程与设计》
北大核心
2019
3
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部