期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
弱电离大气等离子体电子能量分布函数的理论研究 被引量:6
1
作者 周前红 董志伟 《物理学报》 SCIE EI CAS CSCD 北大核心 2013年第1期238-244,共7页
使用球谐展开的方法求解玻尔兹曼方程,得到了弱电离大气等离子体(79%氮气和21%的氧气)的电子能量分布函数(EEDF).发现当约化电场较小时(E/N<100Td),EEDF在2—3eV急剧下降,在此情况下,高能尾部比麦氏分布要小;当约化电场增加,E/N>4... 使用球谐展开的方法求解玻尔兹曼方程,得到了弱电离大气等离子体(79%氮气和21%的氧气)的电子能量分布函数(EEDF).发现当约化电场较小时(E/N<100Td),EEDF在2—3eV急剧下降,在此情况下,高能尾部比麦氏分布要小;当约化电场增加,E/N>400Td,分布函数趋近于麦氏分布;当约化电场进一步增加,E/N>2000Td,EEDF的高能尾部(超过200eV)相对于麦氏分布增加.在高频场作用下,EEDF更倾向于麦氏分布.当ω﹤﹤vm时,有效电子温度只依赖于E/ω,而与碰撞频率无关;当ω>>vm时,有效电子温度只依赖于E/N,与微波频率无关.与一些单原子分子等离子体中电子-电子碰撞在电离度大于106时就会影响EEDF不同,空气等离子体中,只有当电离度大于0.1%时,电子-电子碰撞才会对EEDF有明显影响. 展开更多
关键词 弱电离大气等离子体 玻尔兹曼方程 电子能量分布函数
原文传递
弱电离大气等离子体电子碰撞能量损失的理论研究 被引量:3
2
作者 周前红 董志伟 《物理学报》 SCIE EI CAS CSCD 北大核心 2013年第20期308-314,共7页
在前期计算电子能量分布函数的基础上,求出弱电离大气等离子体中各碰撞反应过程的电子能量损失.由于在弹性碰撞中电子-重粒子能量交换很少,同时氮气、氧气分子又有很多能量阈值较低的转动、振动能级存在,因此在大气等离子体中弹性碰撞... 在前期计算电子能量分布函数的基础上,求出弱电离大气等离子体中各碰撞反应过程的电子能量损失.由于在弹性碰撞中电子-重粒子能量交换很少,同时氮气、氧气分子又有很多能量阈值较低的转动、振动能级存在,因此在大气等离子体中弹性碰撞电子能量损失所占份额很小(直流电场下小于6%).研究发现,弱电离大气等离子体中在不同能量区间占主导的能量损失过程不同.随着有效电子温度(或约化场强)增加,占主导的电子能量损失过程依次为转动激发、振动激发、电子态激发、碰撞电离、加速电离产生的二次电子.在约化场强E/N=1350 Td(或有效电子温度为14 eV)附近,平均电离一个电子所需的能量最小,约为57 eV.因此可以根据不同的需求调节电场强度,从而达到较高的能量利用率. 展开更多
关键词 弱电离大气等离子体 碰撞反应过程 电子能量损失
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部