In order to study an isolation system of rolling friction with springs, computer programs were compiled to evaluate the seismic performance based on its movement characteristics. Through the programs, the influences o...In order to study an isolation system of rolling friction with springs, computer programs were compiled to evaluate the seismic performance based on its movement characteristics. Through the programs, the influences of various seismic performance factors, e.g., rolling friction coefficient, spring constant, were systematically investigated. Results show that by increasing the rolling friction coefficient, the structural relative displacement due to seismic load effectively decreases, while the structural response magnitude varies mainly depending on the correlations between the following factors: the spring constant, the earthquake intensity, and the rolling friction coefficient. Furthermore, increasing the spring constant can decrease the structural relative displacement, as well as residual displacement, however, it increases the structural response magnitude. Finally, based on the analyses of various seismic performance factors subjected to the scenario earthquakes, optimized theoretical seismic performance can be achieved by reasonably combining the spring constant and the rolling friction coefficient.展开更多
An analytic approximation method known as the homotopy analysis method(HAM)is applied to study the nonlinear hydroelastic progressive waves traveling in an infinite elastic plate such as an ice sheet or a very large f...An analytic approximation method known as the homotopy analysis method(HAM)is applied to study the nonlinear hydroelastic progressive waves traveling in an infinite elastic plate such as an ice sheet or a very large floating structure(VLFS)on the surface of deep water.A convergent analytical series solution for the plate deflection is derived by choosing the optimal convergencecontrol parameter.Based on the analytical solution the efects of diferent parameters are considered.We find that the plate deflection becomes lower with an increasing Young’s modulus of the plate.The displacement tends to be flattened at the crest and be sharpened at the trough as the thickness of the plate increases,and the larger density of the plate also causes analogous results.Furthermore,it is shown that the hydroelastic response of the plate is greatly afected by the high-amplitude incident wave.The results obtained can help enrich our understanding of the nonlinear hydroelastic response of an ice sheet or a VLFS on the water surface.展开更多
基金Project(51308549)supported by the National Natural Science Foundation,China
文摘In order to study an isolation system of rolling friction with springs, computer programs were compiled to evaluate the seismic performance based on its movement characteristics. Through the programs, the influences of various seismic performance factors, e.g., rolling friction coefficient, spring constant, were systematically investigated. Results show that by increasing the rolling friction coefficient, the structural relative displacement due to seismic load effectively decreases, while the structural response magnitude varies mainly depending on the correlations between the following factors: the spring constant, the earthquake intensity, and the rolling friction coefficient. Furthermore, increasing the spring constant can decrease the structural relative displacement, as well as residual displacement, however, it increases the structural response magnitude. Finally, based on the analyses of various seismic performance factors subjected to the scenario earthquakes, optimized theoretical seismic performance can be achieved by reasonably combining the spring constant and the rolling friction coefficient.
基金supported by the National Natural Science Foundation of China (Grant No. 11072140)
文摘An analytic approximation method known as the homotopy analysis method(HAM)is applied to study the nonlinear hydroelastic progressive waves traveling in an infinite elastic plate such as an ice sheet or a very large floating structure(VLFS)on the surface of deep water.A convergent analytical series solution for the plate deflection is derived by choosing the optimal convergencecontrol parameter.Based on the analytical solution the efects of diferent parameters are considered.We find that the plate deflection becomes lower with an increasing Young’s modulus of the plate.The displacement tends to be flattened at the crest and be sharpened at the trough as the thickness of the plate increases,and the larger density of the plate also causes analogous results.Furthermore,it is shown that the hydroelastic response of the plate is greatly afected by the high-amplitude incident wave.The results obtained can help enrich our understanding of the nonlinear hydroelastic response of an ice sheet or a VLFS on the water surface.