期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
弹头表面磨损形貌的分形研究 被引量:2
1
作者 王炳成 景畅 +1 位作者 任朝晖 张帆 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2004年第6期829-831,共3页
应用分形理论对弹头磨损表面形貌进行了研究,研究表明,其表面磨损形貌的不规则和随机分布性具有分形特征。应用轮廓仪对不同枪支发射子弹的弹头磨损表面进行数据采集并计算出其分形维数,其研究结果表明:不同枪支发射子弹时,造成弹头表... 应用分形理论对弹头磨损表面形貌进行了研究,研究表明,其表面磨损形貌的不规则和随机分布性具有分形特征。应用轮廓仪对不同枪支发射子弹的弹头磨损表面进行数据采集并计算出其分形维数,其研究结果表明:不同枪支发射子弹时,造成弹头表面磨损程度不同,其分形维数也不同。因此可将其分形维数作为描述弹头表面磨损程度特征量,会比较有效、方便地分析弹头表面形貌变化的特点,为推断发射子弹枪支提供了依据,也为弹头痕迹的量化检验进行了一种新的探索。 展开更多
关键词 分形理论 分形维数 弹头表面 磨损形貌
下载PDF
Range Profile Target Recognition Using Sparse Representation Based on Feature Space
2
作者 吕文涛 王军锋 +1 位作者 郁文贤 包晓敏 《Journal of Shanghai Jiaotong university(Science)》 EI 2017年第5期615-623,共9页
A novel method is presented to improve the recognition rate of warhead in this paper. Firstly, a tool for electromagnetic calculation, like CST Microwave Studio, is used to simulate the frequency response of the elect... A novel method is presented to improve the recognition rate of warhead in this paper. Firstly, a tool for electromagnetic calculation, like CST Microwave Studio, is used to simulate the frequency response of the electromagnetic scattering. Secondly, the echo and further the range profile are acquired from the frequency response by further processing. Thirdly, a set of discriminative features is extracted from the range profiles of the target. Fourthly, these features are used to construct a dictionary for the sparse representation classifier. Finally, the sample of the target can be classified by solving the sparsest coefficients. Since the reconstruction result is determined by a linear combination of the training samples, this method has a good robustness for the variable features. By formulating the problem within a feature-based sparse representation framework, the presented method combines the discriminative features of each sample during the sparse recovery process rather than in a postprocessing manner. Moreover, based on the feature representation space rather than a single feature or image pixel, the constructed dictionary exhibits both strong expressive and discriminative powers that can enhance the classification performance of the test sample. A series of test results based on the simulated data demonstrates the effectiveness of our method. © 2017, Shanghai Jiaotong University and Springer-Verlag GmbH Germany. 展开更多
关键词 TECHNOLOGY
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部