Hot stretch-creep forming (SCF) is a novel technique to produce hard-to-form thin-walled metal components. Comprehensively considering the analysis results of the springback angle, yield strength and microstructure,...Hot stretch-creep forming (SCF) is a novel technique to produce hard-to-form thin-walled metal components. Comprehensively considering the analysis results of the springback angle, yield strength and microstructure, four hot SCF process parameters including temperature, stretch velocity, post stretch percentage and dwelling time of a Ti-6Al-4V alloy sheet were optimized using an orthogonal experiment. The results reveal that temperature is the most important factor on springback angle. The yield strength of the deformed material in 0° direction increases, while those in directions of 45° and 90° fluctuate around the original value. After hot SCF, the shape of some a phases changes from short thin grains to long slender ones, and the microhardness changes very little. The optimized parameters with temperature of 700 ℃, stretch velocity of 5 mm/min, post stretch percentage of 2% and dwelling time of 8 min are achieved finally.展开更多
For contact dominated numerical control(NC) bending process of tube, the effect of friction on bending deformation behaviors should be focused on to achieve precision bending forming. A three dimensional(3D) elastic-p...For contact dominated numerical control(NC) bending process of tube, the effect of friction on bending deformation behaviors should be focused on to achieve precision bending forming. A three dimensional(3D) elastic-plastic finite element(FE) model of NC bending process was established under ABAQUS/Explicit platform, and its reliability was validated by the experiment. Then, numerical study on bending deformation behaviors under different frictions between tube and various dies was explored from multiple aspects such as wrinkling, wall thickness change and cross section deformation. The results show that the large friction of wiper die-tube reduces the wrinkling wave ratio η and cross section deformation degree ΔD and increases the wall thinning degree Δt. The large friction of mandrel-tube causes large η, Δt and ΔD, and the onset of wrinkling near clamp die. The large friction of pressure die-tube reduces Δt and ΔD, and the friction on this interface has little effect on η. The large friction of bending die-tube reduces η and ΔD, and the friction on this interface has little effect on Δt. The reasonable friction coefficients on wiper die-tube, mandrel-tube, pressure die-tube and bending die-tube of 21-6-9(0Cr21Ni6Mn9N) stainless steel tube in NC bending are 0.05-0.15, 0.05-0.15, 0.25-0.35 and 0.25-0.35, respectively. The results can provide a guideline for applying the friction conditions to establish the robust bending environment for stable and precise bending deformation of tube bending.展开更多
Discontinuities constitute an integral part of rock mass and inherently affect its anisotropic deformation behavior.This work focuses on the equivalent elastic deformation of rock mass with multiple persistent joint s...Discontinuities constitute an integral part of rock mass and inherently affect its anisotropic deformation behavior.This work focuses on the equivalent elastic deformation of rock mass with multiple persistent joint sets.A new method based on the space geometric and mechanical properties of the modified crack tensor is proposed,providing an analytical solution for the equivalent elastic compliance tensor of rock mass.A series of experiments validate the capability of the compliance tensor to accurately represent the deformation of rock mass with multiple persistent joint sets,based on conditions set by the basic hypothesis.The spatially varying rules of the equivalent elastic parameters of rock mass with a single joint set are analyzed to reveal the universal law of the stratified rock mass.展开更多
Based on finite-deformation elastoplastic theory, a scheme to solve the structural problems of the lap link by using ANSYS is proposed. The analysis results show that the maximum deformation exists at the loading spot...Based on finite-deformation elastoplastic theory, a scheme to solve the structural problems of the lap link by using ANSYS is proposed. The analysis results show that the maximum deformation exists at the loading spot of the lateral pin and the stiffness of this area needs to be enhanced; the maximum stresses occur at the two sides adjacent to the loading spot and the intensity around this region should be strengthened;the materials at the pole and pinhole with relatively low stress are redundant and removing excessive weight is possible. Based on the analysis, corresponding improvements are tentatively made, and the simulation results prove that, the stiffness and intensity of the new structure are improved. Furthermore, the reliability and validity of this design are verified by tensile tests of two types of structure.展开更多
To study the damage evolution of the metal plate in elastic and plastic deformation stages, an improved micropolar peridynamic model is proposed to simulate the deformation process and damage evolution of metal materi...To study the damage evolution of the metal plate in elastic and plastic deformation stages, an improved micropolar peridynamic model is proposed to simulate the deformation process and damage evolution of metal materials with variable Poisson’s ratios in the elastic-plastic stages. Firstly, both the stretching and bending moments of the bonds between the material points are added to peridynamic pairwise force functions, and the coordinate transformation of the micro-beam made up of bonds is deduced. Therefore, the numerical calculation implementation of the improved micropolar peridynamic model is obtained. Then, the strain values are obtained by solving the difference equation based on the displacement values of material points, and the stress values can be calculated according to generalized Hook’s law. The elastic and plastic deformation stages can be estimated based on the von Mises yield criterion, and different constitutive equations are adopted to simulate the damage evolution. Finally, the proposed micropolar peridynamic model is applied to simulate the damage evolution of a metal plate with a hole under velocity boundary conditions, and the effectiveness of the model is verified through experiments. In the experiments, the displacement and strain distributions in the stretching process are analyzed by the digital image correlation(DIC) method. By comparing the results, the proposed model is more accurate than the bond-based peridynamic model and the error of the proposed model is 7.2% lower than that of the bond-based peridynamic model. By loading different velocity boundary conditions, the relationship between the loads and damage evolution is studied.展开更多
Aeroelastic problems are encountered at the preliminary design stage of flexible wings for large aircraft. A three-dimensional finite element model of a high-aspect-ratio wing was built, and the influence of the front...Aeroelastic problems are encountered at the preliminary design stage of flexible wings for large aircraft. A three-dimensional finite element model of a high-aspect-ratio wing was built, and the influence of the front and rear spar positions on the results of the aeroelastic analysis and optimization was studied to improve the wing structure desgin. The most feasible and optimal solutions were effectively obtained by aeroelastic optimization. In particular, the position parameter of the front spar has a greater influence on the aeroelastic analysis and optimization than the rear spar. In addition, some key constraints became re- strictive leading to a rapid increase in the structural weight. Therefore, reasonable constraints were necessary for the optimization of results.展开更多
Under repeated train-induced loads, cement and emulsified asphalt mortar(CA mortar) as a viscoelastic material has a time-dependent deformation, part of which is irreversible. This could lead to debonding between the ...Under repeated train-induced loads, cement and emulsified asphalt mortar(CA mortar) as a viscoelastic material has a time-dependent deformation, part of which is irreversible. This could lead to debonding between the mortar layer and the track slab. Based on the theory of viscoelasticity and the analytical method of the time hardening law(THL), the viscoelastic deformation behavior of CA mortar was studied. Using ABAQUS, we established a solid model of China railway track system(CRTS) Ⅰ prefabricated slab track, with CA mortar at different initial Young’s moduli under cyclic loading corresponding to the influence of actual train loads. The results reveal that the fitted parameters of the THL for CA mortar are suitable for describing its viscoelastic deformation. As the initial Young’s modulus increases, the strain difference before and after cyclic loading gradually decreases, and the displacement difference increases from 0.2 mm to 0.6 mm. The deformation mainly occurs at the end of a mortar layer with longitudinal distribution of about 2.5 times the fasteners’ spacing. It follows that the viscoelastic performance of CA mortar is one of the most important reasons that cause debonding underneath the track slab. Therefore, we suggest that the adverse effects of viscoelastic behavior of CA mortar should be considered when researching such deformation and damage.展开更多
An efficient Galerkin meshfree formulation for three dimensional simulation of large deformation failure evolution in soils is presented. This formulation utilizes the stabilized conforming nodal integration, where fo...An efficient Galerkin meshfree formulation for three dimensional simulation of large deformation failure evolution in soils is presented. This formulation utilizes the stabilized conforming nodal integration, where for the purpose of stability and efficiency a Lagrangian smoothing strain at nodal point is constructed and thereafter the internal energy is evaluated nodally. This formulation ensures the linear exactness, efficiency and spatial stability in a unified manner and it makes the conventional Galerkin meshfree method affordable for three dimensional simulation. The three dimensional implementation of stabilized conforming nodal integration is discussed in details. To model the failure evolution in soil medium a coupled elasto-plastic damage model is used and an objective stress integration algorithm in combination of elasto-damage predictor and plastic corrector method is employed for stress update. Two typical numerical examples are shown to demonstrate the effectiveness of the present method for modeling large deformation soil failure.展开更多
The chemical mechanical polishing(CMP)technology has been widely used for surface modification of critical materials and components with high quality and efficiency.In a typical CMP process,the mechanical properties o...The chemical mechanical polishing(CMP)technology has been widely used for surface modification of critical materials and components with high quality and efficiency.In a typical CMP process,the mechanical properties of abrasives play a vital role in obtaining the ultra-precision and damage-free surface of wafers for improvement of their performances.In this work,a series of fine structured rod-shaped silica(RmSiO2)-based abrasives with controllable sizes and diverse ordered mesoporous structures were synthesized via a soft template approach,and successfully applied in the sustainable polishing slurry for improving the surface quality of cadmium zinc telluride(CZT)wafers.Compared with commercial silica gel,solid and mesoporous silica spheres,the RmSiO2 abrasives present superior elastic deformation capacity and surface precision machinability on account of their mesoporous structures and rod shapes.Especially,ultra-precision surface roughness and relatively effective material removal speed were achieved by the CMP process using the RmSiO2 abrasives with a length/diameter(L/d)ratio of 1.In addition,a potential CMP mechanism of the developed polishing slurry to CZT wafer was elucidated by analyzing X-ray photoelectron spectra and other characterizations.The proposed interfacial chemical and mechanical effects will provide a new strategy for improving abrasives’machinability and precision manufacture of hard-to-machine materials.展开更多
基金Project(51175022)supported by the National Natural Science Foundation of ChinaProject(51318040315)supported by the National Defense Pre-research of China+1 种基金Project(09000114)supported by Initial Funding for the Doctoral Program of BIGCProject(E-a-2014-13)supported by BIGC Key Project
文摘Hot stretch-creep forming (SCF) is a novel technique to produce hard-to-form thin-walled metal components. Comprehensively considering the analysis results of the springback angle, yield strength and microstructure, four hot SCF process parameters including temperature, stretch velocity, post stretch percentage and dwelling time of a Ti-6Al-4V alloy sheet were optimized using an orthogonal experiment. The results reveal that temperature is the most important factor on springback angle. The yield strength of the deformed material in 0° direction increases, while those in directions of 45° and 90° fluctuate around the original value. After hot SCF, the shape of some a phases changes from short thin grains to long slender ones, and the microhardness changes very little. The optimized parameters with temperature of 700 ℃, stretch velocity of 5 mm/min, post stretch percentage of 2% and dwelling time of 8 min are achieved finally.
基金Project(51164030)supported by the National Natural Science Foundation of China
文摘For contact dominated numerical control(NC) bending process of tube, the effect of friction on bending deformation behaviors should be focused on to achieve precision bending forming. A three dimensional(3D) elastic-plastic finite element(FE) model of NC bending process was established under ABAQUS/Explicit platform, and its reliability was validated by the experiment. Then, numerical study on bending deformation behaviors under different frictions between tube and various dies was explored from multiple aspects such as wrinkling, wall thickness change and cross section deformation. The results show that the large friction of wiper die-tube reduces the wrinkling wave ratio η and cross section deformation degree ΔD and increases the wall thinning degree Δt. The large friction of mandrel-tube causes large η, Δt and ΔD, and the onset of wrinkling near clamp die. The large friction of pressure die-tube reduces Δt and ΔD, and the friction on this interface has little effect on η. The large friction of bending die-tube reduces η and ΔD, and the friction on this interface has little effect on Δt. The reasonable friction coefficients on wiper die-tube, mandrel-tube, pressure die-tube and bending die-tube of 21-6-9(0Cr21Ni6Mn9N) stainless steel tube in NC bending are 0.05-0.15, 0.05-0.15, 0.25-0.35 and 0.25-0.35, respectively. The results can provide a guideline for applying the friction conditions to establish the robust bending environment for stable and precise bending deformation of tube bending.
基金Projects(41172284,51379202) supported by the National Natural Science Foundation of ChinaProject(2013CB036405) supported by the National Basic Research Program of ChinaProject(2013BAB02B01) supported by the National Key Technologies R&D Program of China
文摘Discontinuities constitute an integral part of rock mass and inherently affect its anisotropic deformation behavior.This work focuses on the equivalent elastic deformation of rock mass with multiple persistent joint sets.A new method based on the space geometric and mechanical properties of the modified crack tensor is proposed,providing an analytical solution for the equivalent elastic compliance tensor of rock mass.A series of experiments validate the capability of the compliance tensor to accurately represent the deformation of rock mass with multiple persistent joint sets,based on conditions set by the basic hypothesis.The spatially varying rules of the equivalent elastic parameters of rock mass with a single joint set are analyzed to reveal the universal law of the stratified rock mass.
文摘Based on finite-deformation elastoplastic theory, a scheme to solve the structural problems of the lap link by using ANSYS is proposed. The analysis results show that the maximum deformation exists at the loading spot of the lateral pin and the stiffness of this area needs to be enhanced; the maximum stresses occur at the two sides adjacent to the loading spot and the intensity around this region should be strengthened;the materials at the pole and pinhole with relatively low stress are redundant and removing excessive weight is possible. Based on the analysis, corresponding improvements are tentatively made, and the simulation results prove that, the stiffness and intensity of the new structure are improved. Furthermore, the reliability and validity of this design are verified by tensile tests of two types of structure.
基金The National Natural Science Foundation of China(No.51575101)
文摘To study the damage evolution of the metal plate in elastic and plastic deformation stages, an improved micropolar peridynamic model is proposed to simulate the deformation process and damage evolution of metal materials with variable Poisson’s ratios in the elastic-plastic stages. Firstly, both the stretching and bending moments of the bonds between the material points are added to peridynamic pairwise force functions, and the coordinate transformation of the micro-beam made up of bonds is deduced. Therefore, the numerical calculation implementation of the improved micropolar peridynamic model is obtained. Then, the strain values are obtained by solving the difference equation based on the displacement values of material points, and the stress values can be calculated according to generalized Hook’s law. The elastic and plastic deformation stages can be estimated based on the von Mises yield criterion, and different constitutive equations are adopted to simulate the damage evolution. Finally, the proposed micropolar peridynamic model is applied to simulate the damage evolution of a metal plate with a hole under velocity boundary conditions, and the effectiveness of the model is verified through experiments. In the experiments, the displacement and strain distributions in the stretching process are analyzed by the digital image correlation(DIC) method. By comparing the results, the proposed model is more accurate than the bond-based peridynamic model and the error of the proposed model is 7.2% lower than that of the bond-based peridynamic model. By loading different velocity boundary conditions, the relationship between the loads and damage evolution is studied.
基金supported by the National Natural Science Foundation of China (Grant No.10902006)the Doctoral Program Foundation of Institutions of Higher Education of China (Grant No.20091102110015)
文摘Aeroelastic problems are encountered at the preliminary design stage of flexible wings for large aircraft. A three-dimensional finite element model of a high-aspect-ratio wing was built, and the influence of the front and rear spar positions on the results of the aeroelastic analysis and optimization was studied to improve the wing structure desgin. The most feasible and optimal solutions were effectively obtained by aeroelastic optimization. In particular, the position parameter of the front spar has a greater influence on the aeroelastic analysis and optimization than the rear spar. In addition, some key constraints became re- strictive leading to a rapid increase in the structural weight. Therefore, reasonable constraints were necessary for the optimization of results.
基金Project supported by the National Natural Science Foundation of China(No.51578472)。
文摘Under repeated train-induced loads, cement and emulsified asphalt mortar(CA mortar) as a viscoelastic material has a time-dependent deformation, part of which is irreversible. This could lead to debonding between the mortar layer and the track slab. Based on the theory of viscoelasticity and the analytical method of the time hardening law(THL), the viscoelastic deformation behavior of CA mortar was studied. Using ABAQUS, we established a solid model of China railway track system(CRTS) Ⅰ prefabricated slab track, with CA mortar at different initial Young’s moduli under cyclic loading corresponding to the influence of actual train loads. The results reveal that the fitted parameters of the THL for CA mortar are suitable for describing its viscoelastic deformation. As the initial Young’s modulus increases, the strain difference before and after cyclic loading gradually decreases, and the displacement difference increases from 0.2 mm to 0.6 mm. The deformation mainly occurs at the end of a mortar layer with longitudinal distribution of about 2.5 times the fasteners’ spacing. It follows that the viscoelastic performance of CA mortar is one of the most important reasons that cause debonding underneath the track slab. Therefore, we suggest that the adverse effects of viscoelastic behavior of CA mortar should be considered when researching such deformation and damage.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10972188, 10602049)the Program for New Century Excellent Talents in University from China Education Ministry (Grant No. NCET-09-0678)the Fundamental Research Funds for the Central Universities of China (Grant No. 2010121073)
文摘An efficient Galerkin meshfree formulation for three dimensional simulation of large deformation failure evolution in soils is presented. This formulation utilizes the stabilized conforming nodal integration, where for the purpose of stability and efficiency a Lagrangian smoothing strain at nodal point is constructed and thereafter the internal energy is evaluated nodally. This formulation ensures the linear exactness, efficiency and spatial stability in a unified manner and it makes the conventional Galerkin meshfree method affordable for three dimensional simulation. The three dimensional implementation of stabilized conforming nodal integration is discussed in details. To model the failure evolution in soil medium a coupled elasto-plastic damage model is used and an objective stress integration algorithm in combination of elasto-damage predictor and plastic corrector method is employed for stress update. Two typical numerical examples are shown to demonstrate the effectiveness of the present method for modeling large deformation soil failure.
基金the National Key R&D Program of China(2018YFA0703400)the Xinghai Science Funds for Distinguished Young Scholars+1 种基金Thousand Youth Talents at Dalian University of Technology,the Collaborative Innovation Center of Major Machine Manufacturing in Liaoning,Liaoning BaiQianWan Talents ProgramDalian National Laboratory for Clean Energy(DNL),DNL Cooperation Fund,Chinese Academy of Sciences(DNL180402)。
文摘The chemical mechanical polishing(CMP)technology has been widely used for surface modification of critical materials and components with high quality and efficiency.In a typical CMP process,the mechanical properties of abrasives play a vital role in obtaining the ultra-precision and damage-free surface of wafers for improvement of their performances.In this work,a series of fine structured rod-shaped silica(RmSiO2)-based abrasives with controllable sizes and diverse ordered mesoporous structures were synthesized via a soft template approach,and successfully applied in the sustainable polishing slurry for improving the surface quality of cadmium zinc telluride(CZT)wafers.Compared with commercial silica gel,solid and mesoporous silica spheres,the RmSiO2 abrasives present superior elastic deformation capacity and surface precision machinability on account of their mesoporous structures and rod shapes.Especially,ultra-precision surface roughness and relatively effective material removal speed were achieved by the CMP process using the RmSiO2 abrasives with a length/diameter(L/d)ratio of 1.In addition,a potential CMP mechanism of the developed polishing slurry to CZT wafer was elucidated by analyzing X-ray photoelectron spectra and other characterizations.The proposed interfacial chemical and mechanical effects will provide a new strategy for improving abrasives’machinability and precision manufacture of hard-to-machine materials.