First principles calculations are preformed to systematically investigate the elastic and thermodynamic properties of Re2N at high pressure and high temperature. The Re2N exhibits a clear elastic anisotropy and the el...First principles calculations are preformed to systematically investigate the elastic and thermodynamic properties of Re2N at high pressure and high temperature. The Re2N exhibits a clear elastic anisotropy and the elastic constants C11 and C33 vary rapidly in comparison with the variations in C12, C13 and C44 at high pressure. In addition, bulk modulus B, elastic modulus E, and shear modulus Gas a function of crystal orientations for Re2N are also investigated for the first time. The tensile directional dependences of the elastic modulus obey the following trend: [0001] [1211] [1010] [1011]EEEE〉〉〉 . The shear moduli of Re2N within the (0001) basal plane are the smallest and greatly reduce the resistance of against large shear deformations. Based on the quasi-harmonic Debye model, the dependences of Debye temperature, Grüneisen parameter, heat capacity and thermal expansion coefficient on the temperature and pressure are explored in the whole pressure range from 0 to 50 GPa and temperature range from 0 to 1600 K.展开更多
The first-principle calculations were performed to investigate the structural,mechanical,electronic and thermal properties of the binary ductile intermetallic compound CeAg with B2(CsCl) structure.The calculated val...The first-principle calculations were performed to investigate the structural,mechanical,electronic and thermal properties of the binary ductile intermetallic compound CeAg with B2(CsCl) structure.The calculated value of lattice constant a0 for CeAg with generalized gradient approximation is 3.713-,which is in better agreement with experimental data than local spin density approximation.The negative energy of formation implies that CeAg with B2 structure is thermodynamically stable phase.The greater separation between the d bands of Ce and Ag results in weaker bond hybridization of Ce d—Ag d,which prevents formation of directional covalent bonding.The three independent elastic constants(C11,C12 and C44) are derived and the bulk modulus,shear modulus,elastic modulus,anisotropy factor,and Poisson ratio are determined to be 57.6 GPa,15.8 GPa,43.4 GPa,3.15 and 0.374,respectively.The elastic constants meet all the mechanical stability criteria.The value of Pugh's criterion is 3.65.The ductility of CeAg is predicted if Pugh's criterion is greater than 1.75.Furthermore,the variations of volume,bulk modulus,heat capacity,and thermal expansion coefficient with temperature and/or pressure were calculated and discussed.展开更多
The influence of Zr content on the microstructure and mechanical properties of implant Ti-35Nb-4Sn-6Mo-xZr (x=0, 3, 6, 9, 12, 15; mass fraction) alloys was investigated. It is shown that Ti-35Nb-4Sn-6Mo-xZr alloys a...The influence of Zr content on the microstructure and mechanical properties of implant Ti-35Nb-4Sn-6Mo-xZr (x=0, 3, 6, 9, 12, 15; mass fraction) alloys was investigated. It is shown that Ti-35Nb-4Sn-6Mo-xZr alloys appear to have equiaxed single β microstructure after solution treatment at 1023 K. It is found that the grains are refined first and then coarsened with the increase of Zr content. It is also found that Zr element added to titanium alloys has both the solution strengthening and fine-grain strengthening effect, and affects the lattice parameters. With increasing the Zr content of the alloys, the strength increases, the elongation decreases, whereas the elastic modulus firstly increases and then decreases. The mechanical properties of Ti-35Nb-4Sn-6Mo-9Zr alloy are as follows: σb=785 MPa, δ=11%, E=68 GPa, which is more suitable for acting as human implant materials compared to the traditional implant Ti-6Al-4V alloy.展开更多
A conveyor linear system assumption is based on an approximate description of belt mechanics behavior and constant elastic moduli. It produces analysis errors and improper dynamics simulation in large conveyors. The b...A conveyor linear system assumption is based on an approximate description of belt mechanics behavior and constant elastic moduli. It produces analysis errors and improper dynamics simulation in large conveyors. The belt non-linear characteristics based on sag are described and the belt equivalent elastic moduli expression is deduced. The relationship between belt-equivalent elastic module and elastic module is studied, and their ratio varies from 0.1 to 1.0. The non-linear motion equation with a lumped element model is put forward. Its increment equation and numerical solution are built. A dynamics simulation on a conveyor is carried out, mainly to calculate and compare belt speed, acceleration, tension, displacement of gravity take-up and wave period with linear and non-linear models. It shows that the simulation errors between two models vary from 6% to 50%.展开更多
The effect of pressure on structural, mechanical properties as well as the temperature dependence of thermodynamic properties of TiAl alloy are investigated by implementing first-principles calculations. The results s...The effect of pressure on structural, mechanical properties as well as the temperature dependence of thermodynamic properties of TiAl alloy are investigated by implementing first-principles calculations. The results show that the volume decrea-ses with the pressure increasing. We calculated the CtJ at various pressures and all the results satisfy mechanical stability crite-ria, thus the TiAl alloy is mechanically stable. The elastic constants? bulk modulus and shear modulus calculated are well in a-greement with the calculated values at zero the pressure. The bulk modulus and shear modulus increase with the pressure in-creasing, which reflects the deformation resistance, and accordingly, deformation resistance can be strengthened with the in-crease of pressure. The brittle nature of TiAl alloy turns to ductile nature in 10 - 20 GPa . The Debye temperature, linear ther-mal expansion and heat capacity are calculated using the quasi-harmonic Debye model under the pressure ranging from 0 to 50 GPa and the temperature ranging from 0 to 1 000 K, which are useful to investigate the effect of temperature and pressure on thermodynamic parameters. Finally, electronic structure is calculated at various pressures,and it can be found that the peak intensity decreases with increasing pressure and the the strength of d-d orbital of Ti is weakened but the ductility is enhanced.展开更多
In order to estimate deformation and mechanical properties of material accurately,elastic and plastic deformation behavior of small punch test was discussed in this paper.A two-dimensional finite element model was est...In order to estimate deformation and mechanical properties of material accurately,elastic and plastic deformation behavior of small punch test was discussed in this paper.A two-dimensional finite element model was established based upon the Gurson-Tvergaard-Needleman(GTN)equation.According to the integration of load–displacement curves with different displacements,the evolution of elastic energy was obtained.The results show that the elastic energy increases quickly in the initial region and tends to be an approximate constant during the plastic bending phase.Meanwhile,an obvious change of the slope of load–displacement curve can be found in the elastic-plastic transition region.The macroscopic deformation and fracture feature were also discussed in order to verify the deformation analysis.Finally,the yield strength,tensile strength and elongation of AISI304 were obtained based on the analysis of deformation energy and percent fracture deflection.The results have a good agreement with that of conventional tensile tests,which may provide a theoretical basis of small punch analysis.展开更多
Serious accidents of mine hoists caused by high-speed sliding between friction lining and wire rope are often seen in coal mines.In order to solve this problem,we analyzed the contact characteristics between friction ...Serious accidents of mine hoists caused by high-speed sliding between friction lining and wire rope are often seen in coal mines.In order to solve this problem,we analyzed the contact characteristics between friction lining and wire rope.Then we carried out a dynamic mechanical analysis(DMA) to explain the change in mechanical properties of the friction lining as function of temperature and load frequency and found that temperature has a stronger effect on the mechanical properties than the frequency.We used multiple regression analysis to obtain the thermoviscoelastic constitutive relations of the friction lining.As well we derived the analytic solution for the thermoviscoelastic contact radius and pressure by combining the theory of viscoelastic contact mechanics with thermoviscoelastic constitutive relations.展开更多
To analyze the modeling methods of the dry friction rotor system,a local linearization model of the dry friction damping rotor system was built based on the simplified model of the wave-shaped steel-belt supporting ro...To analyze the modeling methods of the dry friction rotor system,a local linearization model of the dry friction damping rotor system was built based on the simplified model of the wave-shaped steel-belt supporting rotor system.In this model,the linear stiffness of damper closed to pre-deformation was defined as the stiffness of damper,the maximum amplitude of the rotor was calculated according to the load and linear rotor,and the damper's parameters were defined on the basis of the energy dissipation parameters.The presented method can reflect the hysteresis characteristics and is easy to calculate.Experimental results demonstrate the accuracy and feasibility of this method.展开更多
The axisymmetric thermoelastic problem of a uniformly heated, functionally graded isotropic hollow cylinder is considered. An analytical form of solution is proposed. For the case when the Young's modulus and ther...The axisymmetric thermoelastic problem of a uniformly heated, functionally graded isotropic hollow cylinder is considered. An analytical form of solution is proposed. For the case when the Young's modulus and thermal expansion coefficient have a power\|law dependence on the radial coordinate, explicit exact solution is obtained. For the degenerated case, i.e. when the cylinder is homogeneous and isotropic, no stresses will occur provided it is subjected to a uniform temperature. Numerical results are finally given and some important inclusions are obtained.展开更多
The effect of Li(2.0 wt%)addition on mechanical properties and ageing precipitation behavior of Al-3.0 Mg 0.5 Si was investigated by tensile test,dynamic elasticity modulus test,scanning electron microscopy(SEM),trans...The effect of Li(2.0 wt%)addition on mechanical properties and ageing precipitation behavior of Al-3.0 Mg 0.5 Si was investigated by tensile test,dynamic elasticity modulus test,scanning electron microscopy(SEM),transmission electron microscopy(TEM)and high-resolution transmission electron microscopy(HRTEM)images.The results show that the tensile strength of the Li-containing alloy can be significantly improved;however,the ductility is sharply decreased and the fracture mechanism changes from ductile fracture to intergranular fracture.The elasticity modulus of the Li-containing alloy increases by 11.6%compared with the base alloy.The microstructure observation shows that the Li addition can absolutely change the precipitation behavior of the base alloy,andδ′-Al_(3)Li phase becomes the main precipitates.Besides,β′′-Mg_(2)Si andδ′-Al_(3)Li dual phases precipitation can be visibly observed at 170℃ ageing for 100 h,although the quantity ofδ′-Al_(3)Li phase is more thanβ′′-Mg_(2)Si phase.The width of the precipitate-free zone(PFZ)of the Li-containing alloy is much wider at the over-ageing state than the base alloy,which has a negative impact on the ductile and results in the decrease of elongation.展开更多
Morphology,distribution,composition,forming ability,structural stability and intrinsic mechanical properties of the intermetallic compounds(IMCs)formed in steel/aluminum laser welding were determined through scanning ...Morphology,distribution,composition,forming ability,structural stability and intrinsic mechanical properties of the intermetallic compounds(IMCs)formed in steel/aluminum laser welding were determined through scanning electron microscope,energy dispersive spectrometer,X-ray diffractometer and first-principles calculation.It was found that the mechanical properties of the joint are limited by the Fe−Al IMCs,whose brittleness is attributed to the orbital hybridization between Al(s),Al(p)and Fe(d).However,the joint properties are improved by adding interlayer,which is ascribed to some changes of electronic structure of the generated IMCs.The transition mechanism of IMCs changing from brittle to ductile is mainly due to the weak ability of interlayer elements to attract electrons.The mechanical properties of the joint are closely related to the ductility or brittleness of the IMCs.Moreover,the addition of Ti foil interlayer effectively improves the mechanical properties of the joints,which means that the experimental verification is in good agreement with the theoretical calculation predictions.展开更多
A mechanical model is established for mode II interfacial crack static growing along an elastic-elastic power law creeping bimaterial interface. For frictional contact of boundary conditions on crack faces, asymptotic...A mechanical model is established for mode II interfacial crack static growing along an elastic-elastic power law creeping bimaterial interface. For frictional contact of boundary conditions on crack faces, asymptotic solutions of the stresses and strains of near tip-crack are got. It was shown that in stable creep growing phase, elastic deformation and viscous deformation are equally dominant in the near-tip field, the stress and strain have the same singularity and there is not the oscillatory singularity the field. Through numerical calculation , it is shown that the frictional coefficient η notably influence the crack-tip field.展开更多
In part I of this series, experimental investigation in EPFM (elastic-plastic fracture mechanics) had been discussed. In this paper, experimental investigation in LEFM ( linear elastic fracture mechanics) is given...In part I of this series, experimental investigation in EPFM (elastic-plastic fracture mechanics) had been discussed. In this paper, experimental investigation in LEFM ( linear elastic fracture mechanics) is given. Fracture toughness tests had been carried out on three different strength steels, using both through-cracked specimens with different α/W ratio and semi-elliptical cracked specimens with variable crack size and shape. Results show that the fracture toughness KIC increases with decreasing α/W when α/W 〈 0.3 for three-point-bend specimens, and that for α/W 〉 0.3, it is independent of α/W. Shallow crack specimens, both through-cracked and surface-cracked, gave markedly higher values than deeply notched specimens. However, the effect of crack shape on fracture toughness is negligible. Results also show that the LEFM approach to fracture is not tenable for design stresses where αc is often very small, far less than 2.5 ( KIC/σy)^2.展开更多
The behavior of two parallel symmetry permeable cracks in functionally graded piezoelectric materials subjected to an anti-plane shear loading was investigated. To make the analysis tractable, it was assumed that the ...The behavior of two parallel symmetry permeable cracks in functionally graded piezoelectric materials subjected to an anti-plane shear loading was investigated. To make the analysis tractable, it was assumed that the material properties varied exponentially with coordinate vertical to the crack. By using the Fourier transform, the problem could be solved with the help of two pairs of dual integral equations, in which the unknown variables were the jumps of the displacements across the crack surfaces. To solve the dual integral equations, the displacement on the crack surfaces was expanded in a series of Jacobi polynomials. The normalized stress and electrical displacement intensity factors were determined for different geometric and property parameters for permeable electric boundary conditions. Numerical examples were provided to show the effect of the geometry of the interacting cracks and the functionally graded material parameter upon the stress intensity factors of cracks.展开更多
To investigate the spring-back behavior of dual-phase (DP) steel, V-shape spring-back experiments with different bending angles, relative bending radii and blank holding forces were carried out in this paper. It is ...To investigate the spring-back behavior of dual-phase (DP) steel, V-shape spring-back experiments with different bending angles, relative bending radii and blank holding forces were carried out in this paper. It is concluded that with the increase of V-shape angle or blank holding force, the spring-back of DP steel sheets decreases; while raising fiIlet radius of punch, which has the most apparent effects on spring-back, advances spring-back angle. Among DP590, DP780 and DP980, higher strength yields more notable spring-back due to larger elastic deformation. The difference of spring-back among these materials is relevant with the microstructure and mechanical properties. The total elastic deformation approximately equals the ratio of the strength corresponding to the applied load to the modulus of elasticity.展开更多
基金Project (11204007) supported by the National Natural Science Foundation of ChinaProject (2012JQ1005) supported by Natural Science Basic Research Plan of Shaanxi Province,ChinaProject (2013JK0638) supported by the Education Committee Natural Science Foundation of Shaanxi Province,China
文摘First principles calculations are preformed to systematically investigate the elastic and thermodynamic properties of Re2N at high pressure and high temperature. The Re2N exhibits a clear elastic anisotropy and the elastic constants C11 and C33 vary rapidly in comparison with the variations in C12, C13 and C44 at high pressure. In addition, bulk modulus B, elastic modulus E, and shear modulus Gas a function of crystal orientations for Re2N are also investigated for the first time. The tensile directional dependences of the elastic modulus obey the following trend: [0001] [1211] [1010] [1011]EEEE〉〉〉 . The shear moduli of Re2N within the (0001) basal plane are the smallest and greatly reduce the resistance of against large shear deformations. Based on the quasi-harmonic Debye model, the dependences of Debye temperature, Grüneisen parameter, heat capacity and thermal expansion coefficient on the temperature and pressure are explored in the whole pressure range from 0 to 50 GPa and temperature range from 0 to 1600 K.
基金Project(2011CB605504) supported by the National Basic Research Program of ChinaProject(50871054) supported by the National Natural Science Foundation of ChinaProject(20093219110035) supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘The first-principle calculations were performed to investigate the structural,mechanical,electronic and thermal properties of the binary ductile intermetallic compound CeAg with B2(CsCl) structure.The calculated value of lattice constant a0 for CeAg with generalized gradient approximation is 3.713-,which is in better agreement with experimental data than local spin density approximation.The negative energy of formation implies that CeAg with B2 structure is thermodynamically stable phase.The greater separation between the d bands of Ce and Ag results in weaker bond hybridization of Ce d—Ag d,which prevents formation of directional covalent bonding.The three independent elastic constants(C11,C12 and C44) are derived and the bulk modulus,shear modulus,elastic modulus,anisotropy factor,and Poisson ratio are determined to be 57.6 GPa,15.8 GPa,43.4 GPa,3.15 and 0.374,respectively.The elastic constants meet all the mechanical stability criteria.The value of Pugh's criterion is 3.65.The ductility of CeAg is predicted if Pugh's criterion is greater than 1.75.Furthermore,the variations of volume,bulk modulus,heat capacity,and thermal expansion coefficient with temperature and/or pressure were calculated and discussed.
基金Project(BE2011778)supported by Science and Technology Support Program of Jiangsu Province,ChinaProject(CE20115036)supported by Science and Technology Support Program of Changzhou City,China
文摘The influence of Zr content on the microstructure and mechanical properties of implant Ti-35Nb-4Sn-6Mo-xZr (x=0, 3, 6, 9, 12, 15; mass fraction) alloys was investigated. It is shown that Ti-35Nb-4Sn-6Mo-xZr alloys appear to have equiaxed single β microstructure after solution treatment at 1023 K. It is found that the grains are refined first and then coarsened with the increase of Zr content. It is also found that Zr element added to titanium alloys has both the solution strengthening and fine-grain strengthening effect, and affects the lattice parameters. With increasing the Zr content of the alloys, the strength increases, the elongation decreases, whereas the elastic modulus firstly increases and then decreases. The mechanical properties of Ti-35Nb-4Sn-6Mo-9Zr alloy are as follows: σb=785 MPa, δ=11%, E=68 GPa, which is more suitable for acting as human implant materials compared to the traditional implant Ti-6Al-4V alloy.
基金TheCultureExchangeProgrambetweenChinaandCzechGovernments (No .199899)
文摘A conveyor linear system assumption is based on an approximate description of belt mechanics behavior and constant elastic moduli. It produces analysis errors and improper dynamics simulation in large conveyors. The belt non-linear characteristics based on sag are described and the belt equivalent elastic moduli expression is deduced. The relationship between belt-equivalent elastic module and elastic module is studied, and their ratio varies from 0.1 to 1.0. The non-linear motion equation with a lumped element model is put forward. Its increment equation and numerical solution are built. A dynamics simulation on a conveyor is carried out, mainly to calculate and compare belt speed, acceleration, tension, displacement of gravity take-up and wave period with linear and non-linear models. It shows that the simulation errors between two models vary from 6% to 50%.
基金National Natural Science Foundation of China(Nos.U1610123,51674226,51574207,51574206,51274175)International Cooperation Project of the Ministry of Science and Technology of China(No.2014DFA50320)+3 种基金Science and Technology Major Project of Shanxi Province(No.MC2016-06)International Science and Technology Cooperation Project of Shanxi Province(No.2015081041)Research Project Supported by Shanxi Scholarship Council of China(No.2016-Key 2)Transformation of Scientific and Technological Achievements Special Guide Project of Shanxi Province(No.201604D131029)
文摘The effect of pressure on structural, mechanical properties as well as the temperature dependence of thermodynamic properties of TiAl alloy are investigated by implementing first-principles calculations. The results show that the volume decrea-ses with the pressure increasing. We calculated the CtJ at various pressures and all the results satisfy mechanical stability crite-ria, thus the TiAl alloy is mechanically stable. The elastic constants? bulk modulus and shear modulus calculated are well in a-greement with the calculated values at zero the pressure. The bulk modulus and shear modulus increase with the pressure in-creasing, which reflects the deformation resistance, and accordingly, deformation resistance can be strengthened with the in-crease of pressure. The brittle nature of TiAl alloy turns to ductile nature in 10 - 20 GPa . The Debye temperature, linear ther-mal expansion and heat capacity are calculated using the quasi-harmonic Debye model under the pressure ranging from 0 to 50 GPa and the temperature ranging from 0 to 1 000 K, which are useful to investigate the effect of temperature and pressure on thermodynamic parameters. Finally, electronic structure is calculated at various pressures,and it can be found that the peak intensity decreases with increasing pressure and the the strength of d-d orbital of Ti is weakened but the ductility is enhanced.
基金Project(2012AA040105)supported by National High-technology Research and Development of China
文摘In order to estimate deformation and mechanical properties of material accurately,elastic and plastic deformation behavior of small punch test was discussed in this paper.A two-dimensional finite element model was established based upon the Gurson-Tvergaard-Needleman(GTN)equation.According to the integration of load–displacement curves with different displacements,the evolution of elastic energy was obtained.The results show that the elastic energy increases quickly in the initial region and tends to be an approximate constant during the plastic bending phase.Meanwhile,an obvious change of the slope of load–displacement curve can be found in the elastic-plastic transition region.The macroscopic deformation and fracture feature were also discussed in order to verify the deformation analysis.Finally,the yield strength,tensile strength and elongation of AISI304 were obtained based on the analysis of deformation energy and percent fracture deflection.The results have a good agreement with that of conventional tensile tests,which may provide a theoretical basis of small punch analysis.
基金Projects 50875253 supported by the National Natural Science Foundation of China20060290505 by the Research Fund for the Doctoral Program of Higher Education of China+2 种基金107054 by the Key Project of Ministry of Education of ChinaBK2008127 by the Natural Science Foundation of Jiangsu ProvinceCX08B_042Z by the Scientific Innovation Program for Postgraduates in Colleges and Universities of Jiangsu Province
文摘Serious accidents of mine hoists caused by high-speed sliding between friction lining and wire rope are often seen in coal mines.In order to solve this problem,we analyzed the contact characteristics between friction lining and wire rope.Then we carried out a dynamic mechanical analysis(DMA) to explain the change in mechanical properties of the friction lining as function of temperature and load frequency and found that temperature has a stronger effect on the mechanical properties than the frequency.We used multiple regression analysis to obtain the thermoviscoelastic constitutive relations of the friction lining.As well we derived the analytic solution for the thermoviscoelastic contact radius and pressure by combining the theory of viscoelastic contact mechanics with thermoviscoelastic constitutive relations.
文摘To analyze the modeling methods of the dry friction rotor system,a local linearization model of the dry friction damping rotor system was built based on the simplified model of the wave-shaped steel-belt supporting rotor system.In this model,the linear stiffness of damper closed to pre-deformation was defined as the stiffness of damper,the maximum amplitude of the rotor was calculated according to the load and linear rotor,and the damper's parameters were defined on the basis of the energy dissipation parameters.The presented method can reflect the hysteresis characteristics and is easy to calculate.Experimental results demonstrate the accuracy and feasibility of this method.
文摘The axisymmetric thermoelastic problem of a uniformly heated, functionally graded isotropic hollow cylinder is considered. An analytical form of solution is proposed. For the case when the Young's modulus and thermal expansion coefficient have a power\|law dependence on the radial coordinate, explicit exact solution is obtained. For the degenerated case, i.e. when the cylinder is homogeneous and isotropic, no stresses will occur provided it is subjected to a uniform temperature. Numerical results are finally given and some important inclusions are obtained.
基金Project(2016YFB0300802)supported by the National Key Research and Development Program of China。
文摘The effect of Li(2.0 wt%)addition on mechanical properties and ageing precipitation behavior of Al-3.0 Mg 0.5 Si was investigated by tensile test,dynamic elasticity modulus test,scanning electron microscopy(SEM),transmission electron microscopy(TEM)and high-resolution transmission electron microscopy(HRTEM)images.The results show that the tensile strength of the Li-containing alloy can be significantly improved;however,the ductility is sharply decreased and the fracture mechanism changes from ductile fracture to intergranular fracture.The elasticity modulus of the Li-containing alloy increases by 11.6%compared with the base alloy.The microstructure observation shows that the Li addition can absolutely change the precipitation behavior of the base alloy,andδ′-Al_(3)Li phase becomes the main precipitates.Besides,β′′-Mg_(2)Si andδ′-Al_(3)Li dual phases precipitation can be visibly observed at 170℃ ageing for 100 h,although the quantity ofδ′-Al_(3)Li phase is more thanβ′′-Mg_(2)Si phase.The width of the precipitate-free zone(PFZ)of the Li-containing alloy is much wider at the over-ageing state than the base alloy,which has a negative impact on the ductile and results in the decrease of elongation.
基金the National Natural Science Foundation of China(Nos.51674112,51774125).
文摘Morphology,distribution,composition,forming ability,structural stability and intrinsic mechanical properties of the intermetallic compounds(IMCs)formed in steel/aluminum laser welding were determined through scanning electron microscope,energy dispersive spectrometer,X-ray diffractometer and first-principles calculation.It was found that the mechanical properties of the joint are limited by the Fe−Al IMCs,whose brittleness is attributed to the orbital hybridization between Al(s),Al(p)and Fe(d).However,the joint properties are improved by adding interlayer,which is ascribed to some changes of electronic structure of the generated IMCs.The transition mechanism of IMCs changing from brittle to ductile is mainly due to the weak ability of interlayer elements to attract electrons.The mechanical properties of the joint are closely related to the ductility or brittleness of the IMCs.Moreover,the addition of Ti foil interlayer effectively improves the mechanical properties of the joints,which means that the experimental verification is in good agreement with the theoretical calculation predictions.
基金the Natural Science Foundation of Heilongjiang Province(A009).
文摘A mechanical model is established for mode II interfacial crack static growing along an elastic-elastic power law creeping bimaterial interface. For frictional contact of boundary conditions on crack faces, asymptotic solutions of the stresses and strains of near tip-crack are got. It was shown that in stable creep growing phase, elastic deformation and viscous deformation are equally dominant in the near-tip field, the stress and strain have the same singularity and there is not the oscillatory singularity the field. Through numerical calculation , it is shown that the frictional coefficient η notably influence the crack-tip field.
文摘In part I of this series, experimental investigation in EPFM (elastic-plastic fracture mechanics) had been discussed. In this paper, experimental investigation in LEFM ( linear elastic fracture mechanics) is given. Fracture toughness tests had been carried out on three different strength steels, using both through-cracked specimens with different α/W ratio and semi-elliptical cracked specimens with variable crack size and shape. Results show that the fracture toughness KIC increases with decreasing α/W when α/W 〈 0.3 for three-point-bend specimens, and that for α/W 〉 0.3, it is independent of α/W. Shallow crack specimens, both through-cracked and surface-cracked, gave markedly higher values than deeply notched specimens. However, the effect of crack shape on fracture toughness is negligible. Results also show that the LEFM approach to fracture is not tenable for design stresses where αc is often very small, far less than 2.5 ( KIC/σy)^2.
基金Sponsred by the Natural Science Foundation with Excellent Young Investigators of Heilongjiang Province(Grant No.JC04 -08)the Natural Science Foundation of Heilongjiang Province(Grant No.A0301)+1 种基金the National Science Foundation with Excellent Young Investigators (Grant No.10325208)the National Natural Science Key Item Foundation of China (Grant No.10432030).
文摘The behavior of two parallel symmetry permeable cracks in functionally graded piezoelectric materials subjected to an anti-plane shear loading was investigated. To make the analysis tractable, it was assumed that the material properties varied exponentially with coordinate vertical to the crack. By using the Fourier transform, the problem could be solved with the help of two pairs of dual integral equations, in which the unknown variables were the jumps of the displacements across the crack surfaces. To solve the dual integral equations, the displacement on the crack surfaces was expanded in a series of Jacobi polynomials. The normalized stress and electrical displacement intensity factors were determined for different geometric and property parameters for permeable electric boundary conditions. Numerical examples were provided to show the effect of the geometry of the interacting cracks and the functionally graded material parameter upon the stress intensity factors of cracks.
文摘To investigate the spring-back behavior of dual-phase (DP) steel, V-shape spring-back experiments with different bending angles, relative bending radii and blank holding forces were carried out in this paper. It is concluded that with the increase of V-shape angle or blank holding force, the spring-back of DP steel sheets decreases; while raising fiIlet radius of punch, which has the most apparent effects on spring-back, advances spring-back angle. Among DP590, DP780 and DP980, higher strength yields more notable spring-back due to larger elastic deformation. The difference of spring-back among these materials is relevant with the microstructure and mechanical properties. The total elastic deformation approximately equals the ratio of the strength corresponding to the applied load to the modulus of elasticity.