In order to investigate the material properties ofperiodontal ligament ( PDL) in different locations, the nanoindentation method is used to survey the elastic modulus of the PDL at different levels. Cadaveric specim...In order to investigate the material properties ofperiodontal ligament ( PDL) in different locations, the nanoindentation method is used to survey the elastic modulus of the PDL at different levels. Cadaveric specimens of human mandibular canine were obtained from 4 adult donors, 16 transverse specimens were made from the sections of cervical margin, midroot and apex using the slow cutting machine. The prepared specimens were tested in different sections (along the longitudinal direction) and different areas (in the circumferential direction). According to the Oliver-Phair theory, the mean values of elastic modulus were calculated foreach area and the differences among them were compared. In the midroot section, the average elastic modulus is ranging from 0. 11 to 0. 23 MPa, the changing range of the cervical margin and apex are from 0. 21 to 0. 53 MPa and 0. 44 to0.62 MPa, respectively. Experimental results indicate that the average elastic modulus in the midroot is lower than that in the cervical margin and apex, and relatively small changes occur among them. However, there is a large change to the elastic modulus value in the cicumferential direction for the PDL.展开更多
The reinforcement and stabilization of loess soil are duscussed by using fibers as the reinforcement and cement as the stabilization materials.To study the strength characteristics of loess soil reinforced by modified...The reinforcement and stabilization of loess soil are duscussed by using fibers as the reinforcement and cement as the stabilization materials.To study the strength characteristics of loess soil reinforced by modified polypropylene(MPP) fiber and cement,samples were prepared with six different fiber contents,three different cement contents,three different curing periods and three kinds of fiber length.The samples were tested under submergence and non-submergence conditions for the unconfined compressive strength(UCS),the splitting tensile strength and the compressive resilient modulus.The results indicated that combined reinforcement by PP fiber and cement could significantly improve the early strength of loess to 3.65–5.99 MPa in three days.With an increase in cement content,the specimens exhibited brittle fracture.However,the addition of fibers gradually modified the mode of fracture from brittle to ductile to plastic.The optimal dosage of fiber to reinforce loess was in the range of 0.3%–0.45% and the optimum fiber length was 12 mm,for which the unconfined compressive strength and tensile strength reached their maxima.Based on the analysis of failure properties,cement-reinforced loess specimens were susceptible to brittle damage under pressure,and the effect of modified polypropylene fiber as the connecting "bridge" could help the specimens achieve a satisfactory level of ductility when under pressure.展开更多
Although pressure cells have been produced and installed successfully for decades,the accuracy of measured pressure is often inadequate.Due to large differences between the stiffness of pressure cells and the surround...Although pressure cells have been produced and installed successfully for decades,the accuracy of measured pressure is often inadequate.Due to large differences between the stiffness of pressure cells and the surrounding media,there is a considerable difference between applied pressure and that measured from pressure cells.It is often difficult and expensive to make a pressure cell with stiffness(modulus of elasticity) similar to the surrounding material in which it will be embedded.In order to improve this situation,a casing material with proportional dimensions is recommended as a means to obtain reliable results.In our study,the effect of using casing in the installation of pressure cells is investigated,providing the characteristics of casing.Some practical recommendations are presented to improve the accuracy of the results using casing.展开更多
To characterize the elastic-plastic properties of thin film materials on elastic-plastic substrates,a simple theory model was proposed,which included three steps:dimensionless analysis,finite element modeling and data...To characterize the elastic-plastic properties of thin film materials on elastic-plastic substrates,a simple theory model was proposed,which included three steps:dimensionless analysis,finite element modeling and data fitting.The dimensionless analysis was applied to deriving two preliminary nondimensional relationships of the material properties,and finite element modeling and data fitting were carried out to establish their explicit forms.Numerical indentation tests were carried out to examine the effectiveness of the proposed model and the good agreement shows that the proposed theory model can be applied in practice.展开更多
Based on a series of tests and engineering examples, a study on the mechanical behavior of synthetic fiber reinforced concrete is presented. As a result, when fiber content varies from 0.03% to 0.14%, though the synth...Based on a series of tests and engineering examples, a study on the mechanical behavior of synthetic fiber reinforced concrete is presented. As a result, when fiber content varies from 0.03% to 0.14%, though the synthetic fiber has more influence on low strength-grade concrete than on high strength-grade concrete, it makes little difference to the mechanical behavior of concrete in general. Test results and applications in construction show that the synthetic fiber can enhance the energy-absorbing capacity and deformation performance of concrete effectively.展开更多
In developing the new friction welding technology, the thermal elastic-plastic stress analysis by the finite element method was carried out to seek the suitable welding conditions such as the friction pressure, the fr...In developing the new friction welding technology, the thermal elastic-plastic stress analysis by the finite element method was carried out to seek the suitable welding conditions such as the friction pressure, the friction speed and the upset pressure. The results obtained are as follows: Heat transfer to the specimens and the intermediate material during friction process was made clear; The operational conditions such as the rotation number of the intermediate material and the friction pressure to reach the liquidus in the interface could be estimated; Further, as the overhang length near the interface is well related to the joint efficiency, we tried to obtain the operational conditions by numerical analysis to acquire a certain length of the overhang length near the interface.展开更多
In this study,we theoretically investigate the dynamic indentation for measuring the loss (damping) factor of a linear viscoelastic material from its indentation response.A rigid indenter with arbitrary tip profile is...In this study,we theoretically investigate the dynamic indentation for measuring the loss (damping) factor of a linear viscoelastic material from its indentation response.A rigid indenter with arbitrary tip profile is assumed to indent into a viscoelastic substrate with arbitrary shape.We perform a theoretical analysis and identify the conditions under which the loss factor of the material can be determined from the phase angle between the applied harmonic indentation load and the corresponding harmonic displacement,a directly measurable quantity in a dynamic indentation test.To validate the conclusion drawn from our theoretical analysis,a series of numerical experiments are performed,including the spherical indentation of a soft layer with irregular surface morphology bonded to a rigid substrate,a conical indenter with tip defects indenting into a half-spherical particle,and the indentation of porous materials.This study may facilitate the use of the dynamic indentation technique to evaluate the damping properties of linear viscoelastic materials,including some advanced polymers and biological soft tissues.展开更多
Based on load-displacement curves,indentation is widely used to extract the elastoplastic properties of materials.It is generally believed that such a measure is non-unique and a full stress-strain curve cannot be obt...Based on load-displacement curves,indentation is widely used to extract the elastoplastic properties of materials.It is generally believed that such a measure is non-unique and a full stress-strain curve cannot be obtained using plural sharp and deep spherical indenters.In this paper we show that by introducing an additional dimensionless function of A/A (the ratio of residual area to the area of an indenter profile) in the reverse analysis,the elastoplastic properties of several unknown materials that exhibit visually indistinguishable load-displacement curves can be uniquely determined with a sharp indentation.展开更多
We investigate the elastic and thermodynamic properties of nanolaminate VzA1C by using the ab initio pseudopotential total energy method. The axial compressibility shows that the c axis is always stiffer than a axis. ...We investigate the elastic and thermodynamic properties of nanolaminate VzA1C by using the ab initio pseudopotential total energy method. The axial compressibility shows that the c axis is always stiffer than a axis. The elastic constants revealed the structural instability at about 500 and 732 GPa. Furthermore, elastic constants C44 reached its maximum at about 550 GPa, dif- fering with the other four C^1, G2, C13 and 6"33 constants. The Poisson's ratio investigations demonstrated that a higher ionic or weaker covalent contribution in intra-atomic bonding and the degree of ionicity increases with pressure. The G/B and B]C44 investigations revealed that VzAIC is brittle and the brittleness decreases with pressure. Also, we found that V2A1C is elastic anisotropic materials and the degree of anisotropy rapidly rises with pressure. Study on Debye temperature and Grtineisen pa- rameter observed weak temperature and strong pressure responses, whereas the sensitive dependence in the thermal expansion coefficient and Helmholtz free energy are clearly seen.展开更多
The classical Hashin-Shtrikman variational principle was re-generalized to the heterogeneous piezoelectric materials.The auxiliary problem is very much simplified by selecting the reference medium as a linearly isotro...The classical Hashin-Shtrikman variational principle was re-generalized to the heterogeneous piezoelectric materials.The auxiliary problem is very much simplified by selecting the reference medium as a linearly isotropic elastic medium.The electromechanical fields in the inhomogeneous piezoelectrics are simulated by introducing into the homogeneous reference medium certain eigenstresses and eigen electric fields.A closed-form solution can be obtained for the disturbance fields,which is convenient for the manipulation of the energy functional.As an application,a two-phase piezoelectric composite with nonpiezoelectric matrix is considered.Expressions of upper and lower bounds for the overall electromechanical moduli of the composite can be developed.These bounds are shown better than the Voigt-Reuss type ones.展开更多
基金The National Natural Science Foundation of Chin(No.51305208)
文摘In order to investigate the material properties ofperiodontal ligament ( PDL) in different locations, the nanoindentation method is used to survey the elastic modulus of the PDL at different levels. Cadaveric specimens of human mandibular canine were obtained from 4 adult donors, 16 transverse specimens were made from the sections of cervical margin, midroot and apex using the slow cutting machine. The prepared specimens were tested in different sections (along the longitudinal direction) and different areas (in the circumferential direction). According to the Oliver-Phair theory, the mean values of elastic modulus were calculated foreach area and the differences among them were compared. In the midroot section, the average elastic modulus is ranging from 0. 11 to 0. 23 MPa, the changing range of the cervical margin and apex are from 0. 21 to 0. 53 MPa and 0. 44 to0.62 MPa, respectively. Experimental results indicate that the average elastic modulus in the midroot is lower than that in the cervical margin and apex, and relatively small changes occur among them. However, there is a large change to the elastic modulus value in the cicumferential direction for the PDL.
基金Project(050101)supported by Horizontal Research Foundation of PLA Air Force Engineering University,ChinaProject(51478462)supported by the National Natural Science Foundation of China
文摘The reinforcement and stabilization of loess soil are duscussed by using fibers as the reinforcement and cement as the stabilization materials.To study the strength characteristics of loess soil reinforced by modified polypropylene(MPP) fiber and cement,samples were prepared with six different fiber contents,three different cement contents,three different curing periods and three kinds of fiber length.The samples were tested under submergence and non-submergence conditions for the unconfined compressive strength(UCS),the splitting tensile strength and the compressive resilient modulus.The results indicated that combined reinforcement by PP fiber and cement could significantly improve the early strength of loess to 3.65–5.99 MPa in three days.With an increase in cement content,the specimens exhibited brittle fracture.However,the addition of fibers gradually modified the mode of fracture from brittle to ductile to plastic.The optimal dosage of fiber to reinforce loess was in the range of 0.3%–0.45% and the optimum fiber length was 12 mm,for which the unconfined compressive strength and tensile strength reached their maxima.Based on the analysis of failure properties,cement-reinforced loess specimens were susceptible to brittle damage under pressure,and the effect of modified polypropylene fiber as the connecting "bridge" could help the specimens achieve a satisfactory level of ductility when under pressure.
文摘Although pressure cells have been produced and installed successfully for decades,the accuracy of measured pressure is often inadequate.Due to large differences between the stiffness of pressure cells and the surrounding media,there is a considerable difference between applied pressure and that measured from pressure cells.It is often difficult and expensive to make a pressure cell with stiffness(modulus of elasticity) similar to the surrounding material in which it will be embedded.In order to improve this situation,a casing material with proportional dimensions is recommended as a means to obtain reliable results.In our study,the effect of using casing in the installation of pressure cells is investigated,providing the characteristics of casing.Some practical recommendations are presented to improve the accuracy of the results using casing.
基金Projects(50531060,10525211,10828205)supported by the National Natural Science Foundation of ChinaProject(10525211)supported by National Science Found for Distinguished Young Scholars of ChinaProject(076044)supported by the Cultivation Fund of the Key Scientific and Technical Innovation Project,Ministry of Education of China
文摘To characterize the elastic-plastic properties of thin film materials on elastic-plastic substrates,a simple theory model was proposed,which included three steps:dimensionless analysis,finite element modeling and data fitting.The dimensionless analysis was applied to deriving two preliminary nondimensional relationships of the material properties,and finite element modeling and data fitting were carried out to establish their explicit forms.Numerical indentation tests were carried out to examine the effectiveness of the proposed model and the good agreement shows that the proposed theory model can be applied in practice.
文摘Based on a series of tests and engineering examples, a study on the mechanical behavior of synthetic fiber reinforced concrete is presented. As a result, when fiber content varies from 0.03% to 0.14%, though the synthetic fiber has more influence on low strength-grade concrete than on high strength-grade concrete, it makes little difference to the mechanical behavior of concrete in general. Test results and applications in construction show that the synthetic fiber can enhance the energy-absorbing capacity and deformation performance of concrete effectively.
文摘In developing the new friction welding technology, the thermal elastic-plastic stress analysis by the finite element method was carried out to seek the suitable welding conditions such as the friction pressure, the friction speed and the upset pressure. The results obtained are as follows: Heat transfer to the specimens and the intermediate material during friction process was made clear; The operational conditions such as the rotation number of the intermediate material and the friction pressure to reach the liquidus in the interface could be estimated; Further, as the overhang length near the interface is well related to the joint efficiency, we tried to obtain the operational conditions by numerical analysis to acquire a certain length of the overhang length near the interface.
基金supported by the National Natural Science Foundation of China(Grant Nos. 10972112,10525210,and 10732050)the National Basic Research Program of China(Grant Nos. 2010CB631005)
文摘In this study,we theoretically investigate the dynamic indentation for measuring the loss (damping) factor of a linear viscoelastic material from its indentation response.A rigid indenter with arbitrary tip profile is assumed to indent into a viscoelastic substrate with arbitrary shape.We perform a theoretical analysis and identify the conditions under which the loss factor of the material can be determined from the phase angle between the applied harmonic indentation load and the corresponding harmonic displacement,a directly measurable quantity in a dynamic indentation test.To validate the conclusion drawn from our theoretical analysis,a series of numerical experiments are performed,including the spherical indentation of a soft layer with irregular surface morphology bonded to a rigid substrate,a conical indenter with tip defects indenting into a half-spherical particle,and the indentation of porous materials.This study may facilitate the use of the dynamic indentation technique to evaluate the damping properties of linear viscoelastic materials,including some advanced polymers and biological soft tissues.
基金supported by the National Natural Science Foundation of China (Grant Nos.11102176,11002122,51172192,and 11172258)the Natural Science Foundation of Hunan Province for Innovation Group(Grant No.09JJ7004)the Key Special Program for Science and Technology of Hunan Province (Grant No.2009FJ1002)
文摘Based on load-displacement curves,indentation is widely used to extract the elastoplastic properties of materials.It is generally believed that such a measure is non-unique and a full stress-strain curve cannot be obtained using plural sharp and deep spherical indenters.In this paper we show that by introducing an additional dimensionless function of A/A (the ratio of residual area to the area of an indenter profile) in the reverse analysis,the elastoplastic properties of several unknown materials that exhibit visually indistinguishable load-displacement curves can be uniquely determined with a sharp indentation.
基金supported by the National Natural Science Foundation of China (Grant Nos.10974139,10964002,11104247 and 11176020)the Provincial Natural Science Foundation of Guizhou (Grant Nos.[2009]2066 and TZJF-2008-42)+2 种基金the Provincial Natural Science Foundation of Hainan (Grant No.110001)the Provincial Natural Science Foundation of Chong Qing(Grant No.CSTCcstc2011jja90002)the Provincial Natural Science Foundation of Zhejiang (Grant No.Y201121807)
文摘We investigate the elastic and thermodynamic properties of nanolaminate VzA1C by using the ab initio pseudopotential total energy method. The axial compressibility shows that the c axis is always stiffer than a axis. The elastic constants revealed the structural instability at about 500 and 732 GPa. Furthermore, elastic constants C44 reached its maximum at about 550 GPa, dif- fering with the other four C^1, G2, C13 and 6"33 constants. The Poisson's ratio investigations demonstrated that a higher ionic or weaker covalent contribution in intra-atomic bonding and the degree of ionicity increases with pressure. The G/B and B]C44 investigations revealed that VzAIC is brittle and the brittleness decreases with pressure. Also, we found that V2A1C is elastic anisotropic materials and the degree of anisotropy rapidly rises with pressure. Study on Debye temperature and Grtineisen pa- rameter observed weak temperature and strong pressure responses, whereas the sensitive dependence in the thermal expansion coefficient and Helmholtz free energy are clearly seen.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11072179 and 11090334)Shanghai Leading Academic Discipline Project (Grant No. B302)
文摘The classical Hashin-Shtrikman variational principle was re-generalized to the heterogeneous piezoelectric materials.The auxiliary problem is very much simplified by selecting the reference medium as a linearly isotropic elastic medium.The electromechanical fields in the inhomogeneous piezoelectrics are simulated by introducing into the homogeneous reference medium certain eigenstresses and eigen electric fields.A closed-form solution can be obtained for the disturbance fields,which is convenient for the manipulation of the energy functional.As an application,a two-phase piezoelectric composite with nonpiezoelectric matrix is considered.Expressions of upper and lower bounds for the overall electromechanical moduli of the composite can be developed.These bounds are shown better than the Voigt-Reuss type ones.