A supply chain resilience model is established based on the biological cellular resilience theory to analyze the impact of the supplier relationship on supply chain resilience. A scenario where the market demand is ch...A supply chain resilience model is established based on the biological cellular resilience theory to analyze the impact of the supplier relationship on supply chain resilience. A scenario where the market demand is changed suddenly by some undesired events is considered. The results reveal that enhancing collaboration with a more resilient supplier can significantly improve supply chain resilience and reduce supply chain losses. It is also found that enhancing the supplier relationship can significantly benefit supply chain resilience if the collaborative intensity is relatively low, and it has less effect if supply chain members have already collaborated closely. Thus, enhancing the supplier relationship to a limited intensity is a relatively effective and economic method to strengthen supply chain resilience.展开更多
A classic hysteretic model, Preisach-Mayergoyz model (P-M model), was used to calculate the nonlinear elastic deformation of magnesium (Mg) and cobalt (Co). Mg and Co samples in cylinder shape were compressively...A classic hysteretic model, Preisach-Mayergoyz model (P-M model), was used to calculate the nonlinear elastic deformation of magnesium (Mg) and cobalt (Co). Mg and Co samples in cylinder shape were compressively tested by uniaxial test machine to obtain their stress—strain curves with hysteretic loops. The hysteretic loops do have two properties of P-M hysteretic systems: wiping out and congruency. It is proved that P-M model is applicable for the analysis of these two metals’ hysteresis. This model was applied on Mg at room temperature and Co at 300 ℃. By the P-M model, Co and Mg nonlinear elastic deformation can be calculated based on the stress history. The simulated stress—strain curves agree well with the experimental results. Therefore, the mechanical hysteresis of these two metals can be easily predicted by the classic P-M hysteretic model.展开更多
Magnetorheological(MR)materials are a class of smart material,whose the mechanical/rheological state can be controlled under a magnetic field.Magnetorheological materials are typically fluids,gels,or elastomers.In thi...Magnetorheological(MR)materials are a class of smart material,whose the mechanical/rheological state can be controlled under a magnetic field.Magnetorheological materials are typically fluids,gels,or elastomers.In this study,anisotropic and isotropic magneto-rheological elastomer(MRE)samples were fabricated using a silicone rubber matrix with carbonyl iron particles as filler particles.The magnetic field-dependent inductance properties of these samples were studied using inductors specially designed for the analysis.The effect of the filler particle content,fabrication conditions,and inductance properties were characterized using a self-built system in both constant and transient magnetic fields.These factors show a significant effect on the inductance properties of the MRE inductor under an applied magnetic field.The anisotropic MRE inductor was more sensitive than the inductor based on an isotropic MRE.Owing to the presence of a constant magnetic field,the inductance value of the MRE inductor decreased with an increase in the external magnetic field.An attempt in elucidation of the mechanism is reported here.This study may enable the MRE to be widely used in practical applications such as monitoring magnetic field or detecting the filler particle content inside MR materials.展开更多
AIM:To develop and validate a transient micro-elastography device to measure liver stiffness(LS) in mice.METHODS:A novel transient micro-elastography(TME) device,dedicated to LS measurements in mice with a range of me...AIM:To develop and validate a transient micro-elastography device to measure liver stiffness(LS) in mice.METHODS:A novel transient micro-elastography(TME) device,dedicated to LS measurements in mice with a range of measurement from 1-170 kPa,was developed using an optimized vibration frequency of 300 Hz and a 2 mm piston.The novel probe was validated in a classical fibrosis model(CCl4) and in a transgenic murine model of systemic amyloidosis.RESULTS:TME could be successfully performed in control mice below the xiphoid cartilage,with a mean LS of 4.4 ± 1.3 kPa,a mean success rate of 88%,and an excellent intra-observer agreement(0.98).Treatment with CCl4 over seven weeks drastically increased LS as compared to controls(18.2 ± 3.7 kPa vs 3.6 ± 1.2 kPa).Moreover,fibrosis stage was highly correlated with LS(Spearman coefficient = 0.88,P < 0.01).In the amyloidosis model,much higher LS values were obtained,reaching maximum values of > 150 kPa.LS significantly correlated with the amyloidosis index(0.93,P < 0.0001) and the plasma concentration of mutant hapoA-□(0.62,P < 0.005).CONCLUSION:Here,we have established the first non-invasive approach to measure LS in mice,and have successfully validated it in two murine models of high LS.展开更多
基金The National Natural Science Foundation of China(No.71171050,71390333)the National Key Technology R&D Program of China during the 12th Five-Year Plan Period(No.2013BAD19B05)+1 种基金the Scientific Innovation Research of College Graduates in Jiangsu Province(No.CXZZ12_0107)the Scientific Research Foundation of Graduate School of Southeast University(No.YBJJ1237)
文摘A supply chain resilience model is established based on the biological cellular resilience theory to analyze the impact of the supplier relationship on supply chain resilience. A scenario where the market demand is changed suddenly by some undesired events is considered. The results reveal that enhancing collaboration with a more resilient supplier can significantly improve supply chain resilience and reduce supply chain losses. It is also found that enhancing the supplier relationship can significantly benefit supply chain resilience if the collaborative intensity is relatively low, and it has less effect if supply chain members have already collaborated closely. Thus, enhancing the supplier relationship to a limited intensity is a relatively effective and economic method to strengthen supply chain resilience.
基金Projects (51002045, 10947105) supported by the National Natural Science Foundation of ChinaProject (2010B430016) supported by the Nature Science Research Project of Education Department of Henan Province, ChinaProject (2012IRTSTHN007) supported by Program for Innovative Research Team (in Science and Technology) in the University of Henan Province, China
文摘A classic hysteretic model, Preisach-Mayergoyz model (P-M model), was used to calculate the nonlinear elastic deformation of magnesium (Mg) and cobalt (Co). Mg and Co samples in cylinder shape were compressively tested by uniaxial test machine to obtain their stress—strain curves with hysteretic loops. The hysteretic loops do have two properties of P-M hysteretic systems: wiping out and congruency. It is proved that P-M model is applicable for the analysis of these two metals’ hysteresis. This model was applied on Mg at room temperature and Co at 300 ℃. By the P-M model, Co and Mg nonlinear elastic deformation can be calculated based on the stress history. The simulated stress—strain curves agree well with the experimental results. Therefore, the mechanical hysteresis of these two metals can be easily predicted by the classic P-M hysteretic model.
基金Project(cstc2019jcyj-msxm X0005)supported by General Program of Chongqing Natural Science Foundation,ChinaProject(51905062)supported by the National Natural Science Foundation of China。
文摘Magnetorheological(MR)materials are a class of smart material,whose the mechanical/rheological state can be controlled under a magnetic field.Magnetorheological materials are typically fluids,gels,or elastomers.In this study,anisotropic and isotropic magneto-rheological elastomer(MRE)samples were fabricated using a silicone rubber matrix with carbonyl iron particles as filler particles.The magnetic field-dependent inductance properties of these samples were studied using inductors specially designed for the analysis.The effect of the filler particle content,fabrication conditions,and inductance properties were characterized using a self-built system in both constant and transient magnetic fields.These factors show a significant effect on the inductance properties of the MRE inductor under an applied magnetic field.The anisotropic MRE inductor was more sensitive than the inductor based on an isotropic MRE.Owing to the presence of a constant magnetic field,the inductance value of the MRE inductor decreased with an increase in the external magnetic field.An attempt in elucidation of the mechanism is reported here.This study may enable the MRE to be widely used in practical applications such as monitoring magnetic field or detecting the filler particle content inside MR materials.
文摘AIM:To develop and validate a transient micro-elastography device to measure liver stiffness(LS) in mice.METHODS:A novel transient micro-elastography(TME) device,dedicated to LS measurements in mice with a range of measurement from 1-170 kPa,was developed using an optimized vibration frequency of 300 Hz and a 2 mm piston.The novel probe was validated in a classical fibrosis model(CCl4) and in a transgenic murine model of systemic amyloidosis.RESULTS:TME could be successfully performed in control mice below the xiphoid cartilage,with a mean LS of 4.4 ± 1.3 kPa,a mean success rate of 88%,and an excellent intra-observer agreement(0.98).Treatment with CCl4 over seven weeks drastically increased LS as compared to controls(18.2 ± 3.7 kPa vs 3.6 ± 1.2 kPa).Moreover,fibrosis stage was highly correlated with LS(Spearman coefficient = 0.88,P < 0.01).In the amyloidosis model,much higher LS values were obtained,reaching maximum values of > 150 kPa.LS significantly correlated with the amyloidosis index(0.93,P < 0.0001) and the plasma concentration of mutant hapoA-□(0.62,P < 0.005).CONCLUSION:Here,we have established the first non-invasive approach to measure LS in mice,and have successfully validated it in two murine models of high LS.