First principles calculations are preformed to systematically investigate the elastic and thermodynamic properties of Re2N at high pressure and high temperature. The Re2N exhibits a clear elastic anisotropy and the el...First principles calculations are preformed to systematically investigate the elastic and thermodynamic properties of Re2N at high pressure and high temperature. The Re2N exhibits a clear elastic anisotropy and the elastic constants C11 and C33 vary rapidly in comparison with the variations in C12, C13 and C44 at high pressure. In addition, bulk modulus B, elastic modulus E, and shear modulus Gas a function of crystal orientations for Re2N are also investigated for the first time. The tensile directional dependences of the elastic modulus obey the following trend: [0001] [1211] [1010] [1011]EEEE〉〉〉 . The shear moduli of Re2N within the (0001) basal plane are the smallest and greatly reduce the resistance of against large shear deformations. Based on the quasi-harmonic Debye model, the dependences of Debye temperature, Grüneisen parameter, heat capacity and thermal expansion coefficient on the temperature and pressure are explored in the whole pressure range from 0 to 50 GPa and temperature range from 0 to 1600 K.展开更多
The pseudopotential theory beyond second order with our well established single parametric model potential is employed to compute total crystal energy, static bulk modulus, energy band gap at the point X on the Jones-...The pseudopotential theory beyond second order with our well established single parametric model potential is employed to compute total crystal energy, static bulk modulus, energy band gap at the point X on the Jones-zone face and pressure-volume relation (equation of state under pressure) of Si, Ge and α-Sn using Nagy's static local field correction function. The results are compared with those obtained using few other local field correction functions. The present results of total energy are in good agreement with the experimental data. Bulk modulus calculated by Nagy's screening function is perfectly matching with the experimental results for Ge and α-Sn. Some deviation is found in the value of energy band gap.展开更多
Structural, elastic and electronic properties of tetragonal Hf02 at applied hydrostatic pressure up to 50 GPa have been investigated using the plane-wave ultrasoft pseudopotential technique based on the first-principl...Structural, elastic and electronic properties of tetragonal Hf02 at applied hydrostatic pressure up to 50 GPa have been investigated using the plane-wave ultrasoft pseudopotential technique based on the first-principles density- functional theory (DFT). The calculated ground-state properties are in good agreement with previous theoretical and experimental data. Six independent elastic constants of tetragonal Hf02 have been calculated at zero pressure and high pressure. From the obtained elastic constants, the bulk, shear and Young's modulus, Poisson's coefficients, acoustic velocity and Debye temperature have been calculated at the applied pressure. Band structure shows that tetragonal Hf02 is an indirect band gap. The variation of the gap versus pressure is well fitted to a quadratic function.展开更多
It is well known that metallic materials exhibit worse fatigue damage tolerance as they behave stronger in strength and softer in modulus. This raises concern on the long term safety of the recently developed biomecha...It is well known that metallic materials exhibit worse fatigue damage tolerance as they behave stronger in strength and softer in modulus. This raises concern on the long term safety of the recently developed biomechanical compatible titanium alloys with high strength and low modulus. Here we demonstrate via a model alloy, Ti-24 Nb-4 Zr-8 Sn in weight percent, that this group of multifunctional titanium alloys possessing nonlinear elastic deformation behavior is tolerant in fatigue notch damage. The results reveal that the alloy has a high strength-to-modulus(σ/E) ratio reaching2% but its fatigue notch sensitivity(q) is low, which decreases linearly from 0.45 to 0.25 as stress concentration factor increases from 2 to 4. This exceeds significantly the typical relationship between σ/E and q of other metallic materials exhibiting linear elasticity. Furthermore, fatigue damage is characterized by an extremely deflected mountain-shape fracture surface, resulting in much longer and more tortuous crack growth path as compared to these linear elastic materials. The above phenomena can be explained by the nonlinear elasticity and its induced stress relief at the notch root in an adaptive manner of higher stress stronger relief. This finding provides a new strategy to balance high strength and good damage tolerance property of metallic materials.展开更多
The process of liver fibrosis changes the rheological properties of liver tissue.This study characterizes and compares liver fibrosis stages from F0 to F4 in rats in terms of shear viscoelastic moduli.Here two viscoel...The process of liver fibrosis changes the rheological properties of liver tissue.This study characterizes and compares liver fibrosis stages from F0 to F4 in rats in terms of shear viscoelastic moduli.Here two viscoelastic models,the Zener model and Voigt model,were applied to experimental data of rheometer tests and then values of elasticity and viscosity were estimated for each fibrosis stage.The results demonstrate that moderate fibrosis(≤F2) has a good correlation with liver viscoelasticity.The mean Zener elasticity E1 increases from(0.452±0.094) kPa(F0) to(1.311±0.717) kPa(F2),while the mean Voigt elasticity E increases from(0.618±0.089) kPa(F0) to(1.701±0.844) kPa(F2).The mean Zener viscosity increases from(3.499±0.186) Pa·s(F0) to(4.947±1.811) Pa·s(F2) and the mean Voigt viscosity increases from(3.379±0.316) Pa·s(F0) to(4.625±1.296) Pa·s(F2).Compared with viscosity,the elasticity shows smaller variations at stages F1 and F2 no matter what viscoelastic model is used.Therefore,the estimated elasticity is more effective than viscosity for differentiating the fibrosis stages from F0 to F2.展开更多
基金Project (11204007) supported by the National Natural Science Foundation of ChinaProject (2012JQ1005) supported by Natural Science Basic Research Plan of Shaanxi Province,ChinaProject (2013JK0638) supported by the Education Committee Natural Science Foundation of Shaanxi Province,China
文摘First principles calculations are preformed to systematically investigate the elastic and thermodynamic properties of Re2N at high pressure and high temperature. The Re2N exhibits a clear elastic anisotropy and the elastic constants C11 and C33 vary rapidly in comparison with the variations in C12, C13 and C44 at high pressure. In addition, bulk modulus B, elastic modulus E, and shear modulus Gas a function of crystal orientations for Re2N are also investigated for the first time. The tensile directional dependences of the elastic modulus obey the following trend: [0001] [1211] [1010] [1011]EEEE〉〉〉 . The shear moduli of Re2N within the (0001) basal plane are the smallest and greatly reduce the resistance of against large shear deformations. Based on the quasi-harmonic Debye model, the dependences of Debye temperature, Grüneisen parameter, heat capacity and thermal expansion coefficient on the temperature and pressure are explored in the whole pressure range from 0 to 50 GPa and temperature range from 0 to 1600 K.
文摘The pseudopotential theory beyond second order with our well established single parametric model potential is employed to compute total crystal energy, static bulk modulus, energy band gap at the point X on the Jones-zone face and pressure-volume relation (equation of state under pressure) of Si, Ge and α-Sn using Nagy's static local field correction function. The results are compared with those obtained using few other local field correction functions. The present results of total energy are in good agreement with the experimental data. Bulk modulus calculated by Nagy's screening function is perfectly matching with the experimental results for Ge and α-Sn. Some deviation is found in the value of energy band gap.
基金Supported by the National Natural Science Foundation of China under Grant No.50902110the Scholarship Award for Excellent Doctoral Student granted by Ministry of Education,China+2 种基金the Doctorate Foundation of Northwestern Polytechnical University under Grant No.cx201005the 111 Project under Grant No.B08040the Research Fund of the State Key Laboratory of Solidification Processing(NWPU),China under Grant No.58-TZ-2011
文摘Structural, elastic and electronic properties of tetragonal Hf02 at applied hydrostatic pressure up to 50 GPa have been investigated using the plane-wave ultrasoft pseudopotential technique based on the first-principles density- functional theory (DFT). The calculated ground-state properties are in good agreement with previous theoretical and experimental data. Six independent elastic constants of tetragonal Hf02 have been calculated at zero pressure and high pressure. From the obtained elastic constants, the bulk, shear and Young's modulus, Poisson's coefficients, acoustic velocity and Debye temperature have been calculated at the applied pressure. Band structure shows that tetragonal Hf02 is an indirect band gap. The variation of the gap versus pressure is well fitted to a quadratic function.
基金supported by the National Key Research and Development Program of China (2016YFC1102601 and 2017YFC1104901)the National Natural Science Foundation of China (51571190 and 51631007)the Key Research Program of Frontier Sciences of Chinese Academy of Sciences (QYZDJ-SSW-JSC031)
文摘It is well known that metallic materials exhibit worse fatigue damage tolerance as they behave stronger in strength and softer in modulus. This raises concern on the long term safety of the recently developed biomechanical compatible titanium alloys with high strength and low modulus. Here we demonstrate via a model alloy, Ti-24 Nb-4 Zr-8 Sn in weight percent, that this group of multifunctional titanium alloys possessing nonlinear elastic deformation behavior is tolerant in fatigue notch damage. The results reveal that the alloy has a high strength-to-modulus(σ/E) ratio reaching2% but its fatigue notch sensitivity(q) is low, which decreases linearly from 0.45 to 0.25 as stress concentration factor increases from 2 to 4. This exceeds significantly the typical relationship between σ/E and q of other metallic materials exhibiting linear elasticity. Furthermore, fatigue damage is characterized by an extremely deflected mountain-shape fracture surface, resulting in much longer and more tortuous crack growth path as compared to these linear elastic materials. The above phenomena can be explained by the nonlinear elasticity and its induced stress relief at the notch root in an adaptive manner of higher stress stronger relief. This finding provides a new strategy to balance high strength and good damage tolerance property of metallic materials.
基金supported by the National Natural Science Foundation of China(Nos.61031003,81271651,and 61101025)the Shenzhen Basic Research Project(No.JC201005280501A),China
文摘The process of liver fibrosis changes the rheological properties of liver tissue.This study characterizes and compares liver fibrosis stages from F0 to F4 in rats in terms of shear viscoelastic moduli.Here two viscoelastic models,the Zener model and Voigt model,were applied to experimental data of rheometer tests and then values of elasticity and viscosity were estimated for each fibrosis stage.The results demonstrate that moderate fibrosis(≤F2) has a good correlation with liver viscoelasticity.The mean Zener elasticity E1 increases from(0.452±0.094) kPa(F0) to(1.311±0.717) kPa(F2),while the mean Voigt elasticity E increases from(0.618±0.089) kPa(F0) to(1.701±0.844) kPa(F2).The mean Zener viscosity increases from(3.499±0.186) Pa·s(F0) to(4.947±1.811) Pa·s(F2) and the mean Voigt viscosity increases from(3.379±0.316) Pa·s(F0) to(4.625±1.296) Pa·s(F2).Compared with viscosity,the elasticity shows smaller variations at stages F1 and F2 no matter what viscoelastic model is used.Therefore,the estimated elasticity is more effective than viscosity for differentiating the fibrosis stages from F0 to F2.