Knowledge of the locations of seismic sources is critical for microseismic monitoring. Time-window-based elastic wave interferometric imaging and weighted- elastic-wave (WEW) interferometric imaging are proposed and...Knowledge of the locations of seismic sources is critical for microseismic monitoring. Time-window-based elastic wave interferometric imaging and weighted- elastic-wave (WEW) interferometric imaging are proposed and used to locate modeled microseismic sources. The proposed method improves the precision and eliminates artifacts in location profiles. Numerical experiments based on a horizontally layered isotropic medium have shown that the method offers the following advantages: It can deal with Iow-SNR microseismic data with velocity perturbations as well as relatively sparse receivers and still maintain relatively high precision despite the errors in the velocity model. Furthermore, it is more efficient than conventional traveltime inversion methods because interferometric imaging does not require traveltime picking. Numerical results using a 2D fault model have also suggested that the weighted-elastic-wave interferometric imaging can locate multiple sources with higher location precision than the time-reverse imaging method.展开更多
This paper makes use of the method of testing and measuring the human body tibia by using2-D moire interferometry of sticking film. hased on the J'--y direction moire patterns recorded synchronously by 2-D optical...This paper makes use of the method of testing and measuring the human body tibia by using2-D moire interferometry of sticking film. hased on the J'--y direction moire patterns recorded synchronously by 2-D optical path,the elastic constant,strain and displacement of the tibia are measured.Compared with the electric measuring method the error is samll and the sensitivity is high.展开更多
基金supported by the R&D of Key Instruments and Technologies for Deep Resources Prospecting(No.ZDYZ2012-1)National Natural Science Foundation of China(No.11374322)
文摘Knowledge of the locations of seismic sources is critical for microseismic monitoring. Time-window-based elastic wave interferometric imaging and weighted- elastic-wave (WEW) interferometric imaging are proposed and used to locate modeled microseismic sources. The proposed method improves the precision and eliminates artifacts in location profiles. Numerical experiments based on a horizontally layered isotropic medium have shown that the method offers the following advantages: It can deal with Iow-SNR microseismic data with velocity perturbations as well as relatively sparse receivers and still maintain relatively high precision despite the errors in the velocity model. Furthermore, it is more efficient than conventional traveltime inversion methods because interferometric imaging does not require traveltime picking. Numerical results using a 2D fault model have also suggested that the weighted-elastic-wave interferometric imaging can locate multiple sources with higher location precision than the time-reverse imaging method.
文摘This paper makes use of the method of testing and measuring the human body tibia by using2-D moire interferometry of sticking film. hased on the J'--y direction moire patterns recorded synchronously by 2-D optical path,the elastic constant,strain and displacement of the tibia are measured.Compared with the electric measuring method the error is samll and the sensitivity is high.