The silica fiber reinforced silica and boron nitride-based composites (SiO2f/SiO2-BN) were prepared firstly via the sol-gel method and then the urea route, and the effects of oxidation treatment on the component, st...The silica fiber reinforced silica and boron nitride-based composites (SiO2f/SiO2-BN) were prepared firstly via the sol-gel method and then the urea route, and the effects of oxidation treatment on the component, structure, mechanical and dielectric properties of the composites were investigated. The results show that the oxidation treatment at 450 ℃ will not impair the structure of boron nitride, and carbon is the main impurity with the excessive urea. The density of SiO2f/SiO2-BN composites is 1.81 g/cm3, and the flexural strength and elastic modulus are 113.9 MPa and 36.5 GPa, respectively. After oxidation treatment, the density varies to 1.80 g/cm3, and the flexural strength and elastic modulus are decreased to 58.9 MPa and 9.4 GPa, respectively. The mechanical properties of the composites are severely damaged, but they still exhibit a good toughness. The composites show excellent dielectric properties with the dielectric constant and loss tangent being 3.22 and 0.003 9, respectively, which indicates that the oxidation treatment is ineffective to improve the dielectric properties of SiOzf/SiO2-BN composites.展开更多
基金Projects(50902150,90916019) supported by the National Natural Science Foundation of ChinaProject (9140C8203040905) supported by the State Key Laboratory Foundation of ChinaProject(S100103) supported by the Graduate Innovation Foundation of National University of Defense Technology,China
文摘The silica fiber reinforced silica and boron nitride-based composites (SiO2f/SiO2-BN) were prepared firstly via the sol-gel method and then the urea route, and the effects of oxidation treatment on the component, structure, mechanical and dielectric properties of the composites were investigated. The results show that the oxidation treatment at 450 ℃ will not impair the structure of boron nitride, and carbon is the main impurity with the excessive urea. The density of SiO2f/SiO2-BN composites is 1.81 g/cm3, and the flexural strength and elastic modulus are 113.9 MPa and 36.5 GPa, respectively. After oxidation treatment, the density varies to 1.80 g/cm3, and the flexural strength and elastic modulus are decreased to 58.9 MPa and 9.4 GPa, respectively. The mechanical properties of the composites are severely damaged, but they still exhibit a good toughness. The composites show excellent dielectric properties with the dielectric constant and loss tangent being 3.22 and 0.003 9, respectively, which indicates that the oxidation treatment is ineffective to improve the dielectric properties of SiOzf/SiO2-BN composites.