As the stiffness of the elastic support varies with the physical-chemical erosion and mechanical friction, model catastrophe of a single degree-of-freedom(DOF) isolation system may occur. A 3-DOF four-point-elastic-su...As the stiffness of the elastic support varies with the physical-chemical erosion and mechanical friction, model catastrophe of a single degree-of-freedom(DOF) isolation system may occur. A 3-DOF four-point-elastic-support rigid plate(FERP) structure is presented to describe the catastrophic isolation system. Based on the newly-established structure, theoretical derivation for stiffness matrix calculation by free response(SMCby FR) and the method of stiffness identification by stiffness matrix disassembly(SIby SMD)are proposed. By integrating the SMCby FR and the SIby SMD and defining the stiffness assurance criterion(SAC), the procedures for stiffness identification of a FERP structure(SIFERP) are summarized. Then, a numerical example is adopted for the SIFERP validation, in which the simulated tested free response data are generated by the numerical methods, and operation for filtering noise is conducted to imitate the practical application. Results in the numerical example demonstrate the feasibility and accuracy of the developed SIFERP for stiffness identification.展开更多
The influence of cable sliding on the deployment of foldable cable-strut structures was studied in this paper. In order to develop an effective program for the cable sliding program, two-node cable element based on th...The influence of cable sliding on the deployment of foldable cable-strut structures was studied in this paper. In order to develop an effective program for the cable sliding program, two-node cable element based on the analytical solution of elastic cate- nary was studied. Then the cable sliding stiffness was defined as the ratio of the variation of the cable force to the variation of the cable length. To validate the proposed numerical method, analyses of two examples given in references were carried out. The results show that the method given in this paper is accurate and effective, which can be used to model the cable sliding in cable structures. Finally, the deployment process of a foldable cable-strut structure, which is composed of four-bar linkages and cables, was discussed. It can be found that the effect of cable sliding on the behavior of cable-strut structures is significant. The length changes of active cables are smaller when the cable sliding is considered. Moreover, the nodal coordinate changes also become faster when the numerical model is with cable sliding.展开更多
基金Project(51221462)supported by the National Natural Science Foundation of ChinaProject(20120095110001)supported by the PhD Programs Foundation of Ministry of Education of ChinaProject(CXZZ13_0927)supported by Research and Innovation Project for College Graduates of Jiangsu Province,China
文摘As the stiffness of the elastic support varies with the physical-chemical erosion and mechanical friction, model catastrophe of a single degree-of-freedom(DOF) isolation system may occur. A 3-DOF four-point-elastic-support rigid plate(FERP) structure is presented to describe the catastrophic isolation system. Based on the newly-established structure, theoretical derivation for stiffness matrix calculation by free response(SMCby FR) and the method of stiffness identification by stiffness matrix disassembly(SIby SMD)are proposed. By integrating the SMCby FR and the SIby SMD and defining the stiffness assurance criterion(SAC), the procedures for stiffness identification of a FERP structure(SIFERP) are summarized. Then, a numerical example is adopted for the SIFERP validation, in which the simulated tested free response data are generated by the numerical methods, and operation for filtering noise is conducted to imitate the practical application. Results in the numerical example demonstrate the feasibility and accuracy of the developed SIFERP for stiffness identification.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50908044, 51278116)Jiangsu "Six Top Talents" Program (Grant No. 07-F-008)+1 种基金Scientific Research Foundation of Graduate School of Southeast University (Grant No. YBJJ0817)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘The influence of cable sliding on the deployment of foldable cable-strut structures was studied in this paper. In order to develop an effective program for the cable sliding program, two-node cable element based on the analytical solution of elastic cate- nary was studied. Then the cable sliding stiffness was defined as the ratio of the variation of the cable force to the variation of the cable length. To validate the proposed numerical method, analyses of two examples given in references were carried out. The results show that the method given in this paper is accurate and effective, which can be used to model the cable sliding in cable structures. Finally, the deployment process of a foldable cable-strut structure, which is composed of four-bar linkages and cables, was discussed. It can be found that the effect of cable sliding on the behavior of cable-strut structures is significant. The length changes of active cables are smaller when the cable sliding is considered. Moreover, the nodal coordinate changes also become faster when the numerical model is with cable sliding.