This study presents the determination of the stress intensity factors (SIFs) at the edges of the cracks in an elastic strip weakened by N-collinear cracks. The problem of an orthotropic elastic strip is reduced to a...This study presents the determination of the stress intensity factors (SIFs) at the edges of the cracks in an elastic strip weakened by N-collinear cracks. The problem of an orthotropic elastic strip is reduced to a system of Cauchy type singular integral equations. The system of singular integral equations is approached by a Quadrature technique. Under two different loading conditions, the results are obtained for the different cases of crack numbers. The resistance of the strip is examined by considering the orthotropic properties of the strip material. Finally, the crack interactions are clarified during the analysis.展开更多
Multiscale asymptotic expansion for the solution of elastic structures of compos- ite materials is presented over general convex domains by constructing boundary layer properly. And the multiscale FE computing scheme ...Multiscale asymptotic expansion for the solution of elastic structures of compos- ite materials is presented over general convex domains by constructing boundary layer properly. And the multiscale FE computing scheme and the post-processing technique with high accuracy are proposed. Finally, Numerical experiments sup- port strongly the theoretical results reported in this paper.展开更多
Great progress has been made in study on dynamic behavior of the damaged structures subject to deterministic excitation.The stochastic response analysis of the damaged structures,however,has not yet attracted people...Great progress has been made in study on dynamic behavior of the damaged structures subject to deterministic excitation.The stochastic response analysis of the damaged structures,however,has not yet attracted people's attention.Taking the damaged elastic beams for example,the analysis procedure for stochastic response of the damaged structures subject to stochastic excitations is investigated in this paper.First,the damage constitutive relations and the corresponding damage evolution equation of one-dimensional elastic structures are briefly discussed.Second,the stochastic dynamic equation with respect to transverse displacement of the damaged elastic beams is deduced.The finite difference method and Newmark method are adopted to solve the stochastic partially-differential equation and corresponding boundary conditions.The stochastic response characteristic,damage evolution law,the effect of noise intensity on damage evolution and the first-passage time of damage are discussed in detail.The present work extends the research field of damaged structures,and the proposed procedure can be generalized to analyze the dynamic behavior of more complex structures,such as damaged plates and shells.展开更多
文摘This study presents the determination of the stress intensity factors (SIFs) at the edges of the cracks in an elastic strip weakened by N-collinear cracks. The problem of an orthotropic elastic strip is reduced to a system of Cauchy type singular integral equations. The system of singular integral equations is approached by a Quadrature technique. Under two different loading conditions, the results are obtained for the different cases of crack numbers. The resistance of the strip is examined by considering the orthotropic properties of the strip material. Finally, the crack interactions are clarified during the analysis.
文摘Multiscale asymptotic expansion for the solution of elastic structures of compos- ite materials is presented over general convex domains by constructing boundary layer properly. And the multiscale FE computing scheme and the post-processing technique with high accuracy are proposed. Finally, Numerical experiments sup- port strongly the theoretical results reported in this paper.
基金supported by the National Natural Science Foundation of China (Grant No. 11072076)
文摘Great progress has been made in study on dynamic behavior of the damaged structures subject to deterministic excitation.The stochastic response analysis of the damaged structures,however,has not yet attracted people's attention.Taking the damaged elastic beams for example,the analysis procedure for stochastic response of the damaged structures subject to stochastic excitations is investigated in this paper.First,the damage constitutive relations and the corresponding damage evolution equation of one-dimensional elastic structures are briefly discussed.Second,the stochastic dynamic equation with respect to transverse displacement of the damaged elastic beams is deduced.The finite difference method and Newmark method are adopted to solve the stochastic partially-differential equation and corresponding boundary conditions.The stochastic response characteristic,damage evolution law,the effect of noise intensity on damage evolution and the first-passage time of damage are discussed in detail.The present work extends the research field of damaged structures,and the proposed procedure can be generalized to analyze the dynamic behavior of more complex structures,such as damaged plates and shells.