Formulae for determining Green strain of an initially curved and twisted rod with circular cross-sections are derived by using the natural (curvilinear) coordinate system. Finite element analyses are performed for the...Formulae for determining Green strain of an initially curved and twisted rod with circular cross-sections are derived by using the natural (curvilinear) coordinate system. Finite element analyses are performed for the flexural buckling of initially curved and twisted thin rods under simultaneous action of axial force and torque. Numerical examples demonstrate that the given formulae are correcte. Some numerical results are compared with existing analytical solutions and data obtained by commercial FE software. The convergence of the proposed curved element is better than that of elements in the commercial FE software. It is shown that good accuracy and convergency are achieved by solving three-dimensional problems.展开更多
文摘Formulae for determining Green strain of an initially curved and twisted rod with circular cross-sections are derived by using the natural (curvilinear) coordinate system. Finite element analyses are performed for the flexural buckling of initially curved and twisted thin rods under simultaneous action of axial force and torque. Numerical examples demonstrate that the given formulae are correcte. Some numerical results are compared with existing analytical solutions and data obtained by commercial FE software. The convergence of the proposed curved element is better than that of elements in the commercial FE software. It is shown that good accuracy and convergency are achieved by solving three-dimensional problems.