Based on the cylindrical cavity expansion theory, a plastic-damage-elastic model is proposed for the penetration problem of geo-material. In the model, the unified strength criterion (Yu, 1991) is adopted as the failu...Based on the cylindrical cavity expansion theory, a plastic-damage-elastic model is proposed for the penetration problem of geo-material. In the model, the unified strength criterion (Yu, 1991) is adopted as the failure criterion. The distributions of the radial stress and velocity are analyzed. According to the Newton's second law, a series results of the final penetration depth and the impedance load are obtained to different parameter b, when a rigid projectile normally impacts and penetrates a semi-infinite geo-material target with an impact velocity of 300-1200 m/s. By comparing with the test data available, it appears that the method can be used in analyzing the final depth and the impedance load of a rigid projectile penetrating into a semi-infinite target with different impact velocities.展开更多
文摘Based on the cylindrical cavity expansion theory, a plastic-damage-elastic model is proposed for the penetration problem of geo-material. In the model, the unified strength criterion (Yu, 1991) is adopted as the failure criterion. The distributions of the radial stress and velocity are analyzed. According to the Newton's second law, a series results of the final penetration depth and the impedance load are obtained to different parameter b, when a rigid projectile normally impacts and penetrates a semi-infinite geo-material target with an impact velocity of 300-1200 m/s. By comparing with the test data available, it appears that the method can be used in analyzing the final depth and the impedance load of a rigid projectile penetrating into a semi-infinite target with different impact velocities.