The rigid body limit equilibrium method(RBLEM) and finite element method(FEM) are two widely used approaches for rock slope's stability analysis currently. RBLEM introduced plethoric assumptions; while traditional...The rigid body limit equilibrium method(RBLEM) and finite element method(FEM) are two widely used approaches for rock slope's stability analysis currently. RBLEM introduced plethoric assumptions; while traditional FEM relied on artificial factors when determining factor of safety(FOS) and sliding surfaces. Based on the definition of structure instability that an elasto-plastic structure is not stable if it is unable to satisfy simultaneously equilibrium condition, kinematical admissibility and constitutive equations under given external loads, deformation reinforcement theory(DRT) is developed. With this theory, plastic complementary energy(PCE) can be used to evaluate the overall stability of rock slope, and the unbalanced force beyond the yield surface could be the identification of local failure. Compared with traditional slope stability analysis approaches, the PCE norm curve to strength reduced factor is introduced and the unbalanced force is applied to the determination of key sliding surfaces and required reinforcement. Typical and important issues in rock slope stability are tested in TFINE(a three-dimensional nonlinear finite element program), which is further applied to several representatives of high rock slope's stability evaluation and reinforcement engineering practice in southwest of China.展开更多
We propose a locking-free nonconforming finite element method to solve for the displacement variation in the pure displacement boundary value problem of planar linear elasticity. The method proposed in this paper is r...We propose a locking-free nonconforming finite element method to solve for the displacement variation in the pure displacement boundary value problem of planar linear elasticity. The method proposed in this paper is robust and optimal, in the sense that the convergence estimate in the energy is independent of the Lame parameter λ.展开更多
This article examines a viscoelastic plate that is driven parametrically by a non-Guassian colored noise,which is simplified to an Ornstein-Uhlenbeck process based on the approximation method.To examine the moment sta...This article examines a viscoelastic plate that is driven parametrically by a non-Guassian colored noise,which is simplified to an Ornstein-Uhlenbeck process based on the approximation method.To examine the moment stability property of the viscoelastic system,we use the stochastic averaging method,Girsanov theorem and Feynmann-Kac formula to derive the approximate analytic expansion of the moment Lyapunov exponent.Furthermore,the Monte Carlo simulation results for the original system are given to check the accuracy of the approximate analytic results.At the end of this paper,results are presented to show some quantitative pictures of the effects of the system parameters,noise parameters and viscoelastic parameters on the stability of the viscoelastic plate.展开更多
In this paper,a high-efficiency aerothermoelastic analysis method based on unified hypersonic lifting surface theory is established.The method adopts a two-way coupling form that couples the structure,aerodynamic forc...In this paper,a high-efficiency aerothermoelastic analysis method based on unified hypersonic lifting surface theory is established.The method adopts a two-way coupling form that couples the structure,aerodynamic force,and aerodynamic thermo and heat conduction.The aerodynamic force is first calculated based on unified hypersonic lifting surface theory,and then the Eckert reference temperature method is used to solve the temperature field,where the transient heat conduction is solved using Fourier’s law,and the modal method is used for the aeroelastic correction.Finally,flutter is analyzed based on the p-k method.The aerothermoelastic behavior of a typical hypersonic low-aspect ratio wing is then analyzed,and the results indicate the following:(1)the combined effects of the aerodynamic load and thermal load both deform the wing,which would increase if the flexibility,size,and flight time of the hypersonic aircraft increase;(2)the effect of heat accumulation should be noted,and therefore,the trajectory parameters should be considered in the design of hypersonic flight vehicles to avoid hazardous conditions,such as flutter.展开更多
基金Project(51479097)supported by the National Natural Science Foundation of ChinaProject(2013-KY-2)supported by State Key Laboratory of Hydroscience and Hydraulic Engineering,China
文摘The rigid body limit equilibrium method(RBLEM) and finite element method(FEM) are two widely used approaches for rock slope's stability analysis currently. RBLEM introduced plethoric assumptions; while traditional FEM relied on artificial factors when determining factor of safety(FOS) and sliding surfaces. Based on the definition of structure instability that an elasto-plastic structure is not stable if it is unable to satisfy simultaneously equilibrium condition, kinematical admissibility and constitutive equations under given external loads, deformation reinforcement theory(DRT) is developed. With this theory, plastic complementary energy(PCE) can be used to evaluate the overall stability of rock slope, and the unbalanced force beyond the yield surface could be the identification of local failure. Compared with traditional slope stability analysis approaches, the PCE norm curve to strength reduced factor is introduced and the unbalanced force is applied to the determination of key sliding surfaces and required reinforcement. Typical and important issues in rock slope stability are tested in TFINE(a three-dimensional nonlinear finite element program), which is further applied to several representatives of high rock slope's stability evaluation and reinforcement engineering practice in southwest of China.
基金Supported by the NSF of the Education Henan(200510078005)
文摘We propose a locking-free nonconforming finite element method to solve for the displacement variation in the pure displacement boundary value problem of planar linear elasticity. The method proposed in this paper is robust and optimal, in the sense that the convergence estimate in the energy is independent of the Lame parameter λ.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11072107 and 91016022)the Specialized Research Fund for the Doctoral Program of Higher Education of China (GrantNo.20093218110003)
文摘This article examines a viscoelastic plate that is driven parametrically by a non-Guassian colored noise,which is simplified to an Ornstein-Uhlenbeck process based on the approximation method.To examine the moment stability property of the viscoelastic system,we use the stochastic averaging method,Girsanov theorem and Feynmann-Kac formula to derive the approximate analytic expansion of the moment Lyapunov exponent.Furthermore,the Monte Carlo simulation results for the original system are given to check the accuracy of the approximate analytic results.At the end of this paper,results are presented to show some quantitative pictures of the effects of the system parameters,noise parameters and viscoelastic parameters on the stability of the viscoelastic plate.
基金supported by the National Natural Science Foundation of China(Grant Nos.11172025 and 91116005)
文摘In this paper,a high-efficiency aerothermoelastic analysis method based on unified hypersonic lifting surface theory is established.The method adopts a two-way coupling form that couples the structure,aerodynamic force,and aerodynamic thermo and heat conduction.The aerodynamic force is first calculated based on unified hypersonic lifting surface theory,and then the Eckert reference temperature method is used to solve the temperature field,where the transient heat conduction is solved using Fourier’s law,and the modal method is used for the aeroelastic correction.Finally,flutter is analyzed based on the p-k method.The aerothermoelastic behavior of a typical hypersonic low-aspect ratio wing is then analyzed,and the results indicate the following:(1)the combined effects of the aerodynamic load and thermal load both deform the wing,which would increase if the flexibility,size,and flight time of the hypersonic aircraft increase;(2)the effect of heat accumulation should be noted,and therefore,the trajectory parameters should be considered in the design of hypersonic flight vehicles to avoid hazardous conditions,such as flutter.