弹性波勘探地震学研究项目组(The Consortium for Research in Elastic Wave Exploration Seismology,CREWES)是一个致力于多分量地震数据采集、分析与解释的应用地球物理研究组织,1989年成立于卡尔加里大学地质与地球物理系.CREWES的...弹性波勘探地震学研究项目组(The Consortium for Research in Elastic Wave Exploration Seismology,CREWES)是一个致力于多分量地震数据采集、分析与解释的应用地球物理研究组织,1989年成立于卡尔加里大学地质与地球物理系.CREWES的研究受到20多家世界各地的业内公司的资助,从1994年起,CREWES项目组也从加拿大自然科学与工程科研委员会获得资助.目前从加拿大自然科学与工程科研委员会获得的资助约占总资助经费的30%,这部分资金用于应用地球物理研究,也用于支持CREWES的日常支出.展开更多
This article provides the application of the high-order, staggered-grid, finite-difference scheme to model elastic wave propagation in 3-D isotropic media. Here, we use second-order, tempo- ral- and high-order spatial...This article provides the application of the high-order, staggered-grid, finite-difference scheme to model elastic wave propagation in 3-D isotropic media. Here, we use second-order, tempo- ral- and high-order spatial finite-difference formulations with a staggered grid for discretization of the 3-D elastic wave equations of motion. The set of absorbing boundary conditions based on paraxial approximations of 3-D elastic wave equations are applied to the numerical boundaries. The trial re- sults for the salt model show that the numerical dispersion is decreased to a minimum extent, the accuracy high and diffracted waves abundant. It also shows that this method can be used for modeling wave propagation in complex media with the lateral variation of velocity.展开更多
文摘弹性波勘探地震学研究项目组(The Consortium for Research in Elastic Wave Exploration Seismology,CREWES)是一个致力于多分量地震数据采集、分析与解释的应用地球物理研究组织,1989年成立于卡尔加里大学地质与地球物理系.CREWES的研究受到20多家世界各地的业内公司的资助,从1994年起,CREWES项目组也从加拿大自然科学与工程科研委员会获得资助.目前从加拿大自然科学与工程科研委员会获得的资助约占总资助经费的30%,这部分资金用于应用地球物理研究,也用于支持CREWES的日常支出.
文摘This article provides the application of the high-order, staggered-grid, finite-difference scheme to model elastic wave propagation in 3-D isotropic media. Here, we use second-order, tempo- ral- and high-order spatial finite-difference formulations with a staggered grid for discretization of the 3-D elastic wave equations of motion. The set of absorbing boundary conditions based on paraxial approximations of 3-D elastic wave equations are applied to the numerical boundaries. The trial re- sults for the salt model show that the numerical dispersion is decreased to a minimum extent, the accuracy high and diffracted waves abundant. It also shows that this method can be used for modeling wave propagation in complex media with the lateral variation of velocity.