Tight sandstone has a certain anisotropy. Using ultrasonic measurements of samples in three different directions and related matched experiments, this study systematically analyzes the pore structure and anisotropy of...Tight sandstone has a certain anisotropy. Using ultrasonic measurements of samples in three different directions and related matched experiments, this study systematically analyzes the pore structure and anisotropy of tight sandstone samples obtained from oil fields and compares results with those of shale. Results firstly show that the anisotropy of tight sandstone is mainly related to the compositional layering and thin interbedding which occur in different sedimentary environments. Tight sandstone has typical transverse isotropic medium characteristics, Young’s modulus increases in different directions with increasing confining pressure, Poisson’s ratio change is not obvious, anisotropic coefficients decrease with increasing effective pressure, and a certain linear relationship exists between ε, γ, and δ. This article finally summarizes anisotropy in different areas, thereby providing a foundation for the use of suitable appraisal models in different regions. This research can be used as an experimental reference for logging evaluation, seismic data interpretation, and fracturing develop of tight sandstones.展开更多
The relationship between the maximum shear stress in a substrate solid and the elastic wave reflection coefficient from the interface between the substrate solid and an overlying solid half-space is investigated. Both...The relationship between the maximum shear stress in a substrate solid and the elastic wave reflection coefficient from the interface between the substrate solid and an overlying solid half-space is investigated. Both substrate and overlying solid media are assumed to be initially isotropic and stress-free. Then as the substrate is subjected to horizontal confined stresses it becomes anisotropic. It is shown that longitudinal and shear wave reflection coefficients are related to the degree of stress induced anisotropy in the substrate medium. From this relation the confined stress level and the maximum shear stress generated on the vertical planes of the substrate are estimated. Authors in their previous investigation computed plane wave reflection coefficient in a biaxially compressed solid substrate immersed in a fluid. This paper reports for the first time how the maximum shear stress in a biaxially compressed substrate medium can be measured from the plane wave reflection coefficients when the overlying medium is also a solid half-space.展开更多
基金sponsored by the National Key Technology R&D Program for the 12th five-year plan(No.2011ZX05020-008)the China National Petroleum Corporation Logging Basic Research Project(No.2014A-3910)
文摘Tight sandstone has a certain anisotropy. Using ultrasonic measurements of samples in three different directions and related matched experiments, this study systematically analyzes the pore structure and anisotropy of tight sandstone samples obtained from oil fields and compares results with those of shale. Results firstly show that the anisotropy of tight sandstone is mainly related to the compositional layering and thin interbedding which occur in different sedimentary environments. Tight sandstone has typical transverse isotropic medium characteristics, Young’s modulus increases in different directions with increasing confining pressure, Poisson’s ratio change is not obvious, anisotropic coefficients decrease with increasing effective pressure, and a certain linear relationship exists between ε, γ, and δ. This article finally summarizes anisotropy in different areas, thereby providing a foundation for the use of suitable appraisal models in different regions. This research can be used as an experimental reference for logging evaluation, seismic data interpretation, and fracturing develop of tight sandstones.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41474098, 11134011)by State Key Laboratory of Acoustics (Grant No. SKLA201608)
文摘The relationship between the maximum shear stress in a substrate solid and the elastic wave reflection coefficient from the interface between the substrate solid and an overlying solid half-space is investigated. Both substrate and overlying solid media are assumed to be initially isotropic and stress-free. Then as the substrate is subjected to horizontal confined stresses it becomes anisotropic. It is shown that longitudinal and shear wave reflection coefficients are related to the degree of stress induced anisotropy in the substrate medium. From this relation the confined stress level and the maximum shear stress generated on the vertical planes of the substrate are estimated. Authors in their previous investigation computed plane wave reflection coefficient in a biaxially compressed solid substrate immersed in a fluid. This paper reports for the first time how the maximum shear stress in a biaxially compressed substrate medium can be measured from the plane wave reflection coefficients when the overlying medium is also a solid half-space.