Liquid metal(LM) has shown potential values in different areas. Attempts to implement LM are tending to develop new functions and make it versatile to improve its performance for practical applications.Here, we presen...Liquid metal(LM) has shown potential values in different areas. Attempts to implement LM are tending to develop new functions and make it versatile to improve its performance for practical applications.Here, we present an unprecedented LM-integrated ultra-elastic microfiber with distinctive features for wearable electronics. The microfiber with a polyurethane shell and an LM core was continuously generated by using a sequenced microfluidic spinning and injection method. Due to the precise fluid manipulation of microfluidics, the resultant microfiber could be tailored with tunable morphologies and responsive conductivities. We have demonstrated that the microfiber could act as dynamic force sensor and motion indicator when it was embedded into elastic films. In addition, the values of the LMintegrated ultra-elastic microfiber on energy conversions such as electro-magnetic or electro-thermal conversions have also been realized. These features indicate that LM-integrated microfiber will open up new frontiers in LM-integrated materials and the wearable electronics field.展开更多
This study describes ciliary motion on the transport of fluids in human body with heat transfer. The mathematical model of the flow of a Jeffrey fluid in a tube of finite length is considered due to metachronal wave o...This study describes ciliary motion on the transport of fluids in human body with heat transfer. The mathematical model of the flow of a Jeffrey fluid in a tube of finite length is considered due to metachronal wave of cilia motion. Flow equations have been modeled and simplified using similarity variables. Exact solutions of the formulated problem have been obtained for velocity, temperature and pressure gradient and graphs for velocity, pressure rise pressure gradient and temperature profile have been plotted and studied for different values of specific physical parameters. Trapping phenomena and isotherms are presented at the end of the paper.展开更多
The wurtzite MnO has been obtained lately and is expected to have large potentiai in varies applications. Since elastic properties are the bases of various applications, we calculate these properties of wurtzite MnO b...The wurtzite MnO has been obtained lately and is expected to have large potentiai in varies applications. Since elastic properties are the bases of various applications, we calculate these properties of wurtzite MnO based on the density-functionai theory and compare it with other two phases of MnO (rocksalt and zinc-blende MnO). The Young's modulus of wurtzite and zinc-blende MnO are 65.6 GPa and 73.4 GPa, respectively, which are much lower than those of rocksaJt MnO (177.6 GPa). More importantly, both the Poisson ratio and the bulk modulus to shear modulus ratio indicate that wurtzite MnO should have much better ductile properties than rocksalt MnO. The calculated piezoelectric constants of wurtzite MnO are comparable to those of ZnO, This suggests wurtzite MnO is a good piezoelectric material. Furthermore, the slowness surfaces of acoustic waves of them are given from Christoffel equation.展开更多
基金supported by the National Natural Science Foundation of China (61927805)the Natural Science Foundation of Jiangsu (BE2018707)+1 种基金the Scientific Research Foundation of Nanjing Universitythe Scientific Research Foundation of Drum Tower Hospital。
文摘Liquid metal(LM) has shown potential values in different areas. Attempts to implement LM are tending to develop new functions and make it versatile to improve its performance for practical applications.Here, we present an unprecedented LM-integrated ultra-elastic microfiber with distinctive features for wearable electronics. The microfiber with a polyurethane shell and an LM core was continuously generated by using a sequenced microfluidic spinning and injection method. Due to the precise fluid manipulation of microfluidics, the resultant microfiber could be tailored with tunable morphologies and responsive conductivities. We have demonstrated that the microfiber could act as dynamic force sensor and motion indicator when it was embedded into elastic films. In addition, the values of the LMintegrated ultra-elastic microfiber on energy conversions such as electro-magnetic or electro-thermal conversions have also been realized. These features indicate that LM-integrated microfiber will open up new frontiers in LM-integrated materials and the wearable electronics field.
文摘This study describes ciliary motion on the transport of fluids in human body with heat transfer. The mathematical model of the flow of a Jeffrey fluid in a tube of finite length is considered due to metachronal wave of cilia motion. Flow equations have been modeled and simplified using similarity variables. Exact solutions of the formulated problem have been obtained for velocity, temperature and pressure gradient and graphs for velocity, pressure rise pressure gradient and temperature profile have been plotted and studied for different values of specific physical parameters. Trapping phenomena and isotherms are presented at the end of the paper.
文摘The wurtzite MnO has been obtained lately and is expected to have large potentiai in varies applications. Since elastic properties are the bases of various applications, we calculate these properties of wurtzite MnO based on the density-functionai theory and compare it with other two phases of MnO (rocksalt and zinc-blende MnO). The Young's modulus of wurtzite and zinc-blende MnO are 65.6 GPa and 73.4 GPa, respectively, which are much lower than those of rocksaJt MnO (177.6 GPa). More importantly, both the Poisson ratio and the bulk modulus to shear modulus ratio indicate that wurtzite MnO should have much better ductile properties than rocksalt MnO. The calculated piezoelectric constants of wurtzite MnO are comparable to those of ZnO, This suggests wurtzite MnO is a good piezoelectric material. Furthermore, the slowness surfaces of acoustic waves of them are given from Christoffel equation.