期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
矩形板结构的振动响应分析
1
作者 王久法 刘启帮 +1 位作者 仝志永 高频 《机械管理开发》 2016年第3期32-35,共4页
为了建立矩形板在弹性约束边界条件下的振动模型,采用横向位移弹簧、旋转约束弹簧和扭转约束弹簧三种类型的弹簧对模拟边界条件。矩形板结构的振动位移函数采用二维Fourier余弦级数加辅助级数的形式来描述,通过引入辅助项使矩形板结构... 为了建立矩形板在弹性约束边界条件下的振动模型,采用横向位移弹簧、旋转约束弹簧和扭转约束弹簧三种类型的弹簧对模拟边界条件。矩形板结构的振动位移函数采用二维Fourier余弦级数加辅助级数的形式来描述,通过引入辅助项使矩形板结构的振动位移函数适用于任意弹性边界条件。结合Rayleigh-Ritz法和Mindlin理论得到矩形板结构在任意边界条件下振动响应的矩阵表达式。最后进行了数值仿真计算,研究了弹簧刚度变化时矩形板结构的响应规律。 展开更多
关键词 弹性约束边界条件 Mindlin理论 改进的Fourier级数 振动响应
下载PDF
Variational Approach of Timoshenko Beams with Internal Elastic Restraints
2
《Journal of Mechanics Engineering and Automation》 2013年第8期491-498,共8页
An exact approach for free transverse vibrations of a Timoshenko beam with ends elastically restrained against rotation and translation and arbitrarily located internal restraints is presented. The calculus of variati... An exact approach for free transverse vibrations of a Timoshenko beam with ends elastically restrained against rotation and translation and arbitrarily located internal restraints is presented. The calculus of variations is used to obtain the equations of motion, the boundary conditions and the transitions conditions which correspond to the described mechanical system. The derived differential equations are solved individually for each segment of the beam with the corresponding boundary and transitions conditions. The derived mathematical formulation generates as particular cases, and several mathematical models are used to simulate the presence of cracks. Some cases available in the literature and the presence of some errors are discussed. New results are presented for different end conditions and restraint conditions in the intermediate elastic constraints with their corresponding modal shapes. 展开更多
关键词 Calculus of variations Yimoshenko beams elastically restrained ends exact result.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部