期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于惩罚逻辑回归的乳腺癌预测 被引量:7
1
作者 胡雪梅 谢英 蒋慧凤 《数据采集与处理》 CSCD 北大核心 2021年第6期1237-1249,共13页
本文采用惩罚逻辑回归方法,利用威斯康星大学的乳腺癌数据对乳腺肿瘤进行预测。首先选取与乳腺癌相关的10个指标作为自变量,接着采用逻辑回归、LASSO惩罚逻辑回归、L_(2)惩罚逻辑回归和弹性网惩罚逻辑回归作为分类器,利用75%的数据集作... 本文采用惩罚逻辑回归方法,利用威斯康星大学的乳腺癌数据对乳腺肿瘤进行预测。首先选取与乳腺癌相关的10个指标作为自变量,接着采用逻辑回归、LASSO惩罚逻辑回归、L_(2)惩罚逻辑回归和弹性网惩罚逻辑回归作为分类器,利用75%的数据集作为训练集建立模型,最后利用25%的测试集、混淆矩阵和ROC曲线评估不同模型的预测精度。结果表明,LASSO惩罚逻辑回归的预测表现最好,预测精度达到97.18%;弹性网惩罚逻辑回归的预测表现随着α的增大发生变化,特别当α=0.9时,预测精度达到97.18%,与LASSO惩罚逻辑回归的预测表现一样好;L_(2)惩罚逻辑回归的预测表现排第3,逻辑回归表现最差。因此,在乳腺肿瘤诊断中可借助LASSO惩罚逻辑回归和弹性网惩罚逻辑回归提高诊断精度。 展开更多
关键词 乳腺癌 逻辑回归 LASSO惩罚逻辑回归 L_(2)惩罚逻辑回归 弹性网惩罚逻辑回归
下载PDF
带有Elastic Net惩罚的贝叶斯分位数回归及其数值模拟
2
作者 刘亚新 《统计与决策》 CSSCI 北大核心 2018年第18期15-19,共5页
对于分位数回归中的变量选择问题,文章将Elastic Net惩罚与分位数回归相结合。对参数估计模型进行变形后,建立了贝叶斯分层模型,使各参数的全条件后验分布都是熟知的分布形式,可以采用Gibbs抽样产生收敛速度较快的马尔科夫链来估计回归... 对于分位数回归中的变量选择问题,文章将Elastic Net惩罚与分位数回归相结合。对参数估计模型进行变形后,建立了贝叶斯分层模型,使各参数的全条件后验分布都是熟知的分布形式,可以采用Gibbs抽样产生收敛速度较快的马尔科夫链来估计回归系数。数值模拟结果表明,该方法在参数估计和预测方面均能达到良好的效果,与现有的四种变量选择方法相比具有较明显的优势。 展开更多
关键词 分位数回归 变量选择 弹性网惩罚 贝叶斯估计
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部