A deformation prediction model for the dynamic creep test is deduced based on the linear viscoelastic(LVE)theory.Then,the defect of the LVE deformation prediction model is analyzed by comparing the prediction of the...A deformation prediction model for the dynamic creep test is deduced based on the linear viscoelastic(LVE)theory.Then,the defect of the LVE deformation prediction model is analyzed by comparing the prediction of the LVE deformation model with the experimental data.To improve accuracy,a modification of the LVE deformation prediction model is made to simulate the nonlinear property of the deformation of asphalt mixtures,and it is verified by comparing its simulation results with the experimental data.The comparison results show that the LVE deformation prediction model cannot simulate the nonlinear property of the permanent deformation of asphalt mixtures,while the modified deformation prediction model can provide more precise simulations of the whole process of the deformation and the permanent deformation in the dynamic creep test.Thus,the proposed modification greatly improves the accuracy of the LVE deformation prediction model.The modified model can provide a better understanding of the rutting behavior of asphalt pavement.展开更多
A series of isometric,radially expanding tubular units,made of dielectric elastomer with compliant electrodes,constitute a soft linear peristaltic pump with distributed actuation for transport of incompressible fluids...A series of isometric,radially expanding tubular units,made of dielectric elastomer with compliant electrodes,constitute a soft linear peristaltic pump with distributed actuation for transport of incompressible fluids.Based on the Gent strain energy model,this paper theoretically analyzes the homogeneous large deformation of the peristaltic unit.We discuss the effects of axial prestretch on the actuation of the actuator.We then predict the maximum actuation strain of this actuator which is limited by dielectric strength of the polymer.The results presented here extend the previous study based on linear elasticity,and can predict the electromechanical behaviors of the novel actuator at large deformations.展开更多
基金The National Natural Science Foundation of Chin(No.51378121)
文摘A deformation prediction model for the dynamic creep test is deduced based on the linear viscoelastic(LVE)theory.Then,the defect of the LVE deformation prediction model is analyzed by comparing the prediction of the LVE deformation model with the experimental data.To improve accuracy,a modification of the LVE deformation prediction model is made to simulate the nonlinear property of the deformation of asphalt mixtures,and it is verified by comparing its simulation results with the experimental data.The comparison results show that the LVE deformation prediction model cannot simulate the nonlinear property of the permanent deformation of asphalt mixtures,while the modified deformation prediction model can provide more precise simulations of the whole process of the deformation and the permanent deformation in the dynamic creep test.Thus,the proposed modification greatly improves the accuracy of the LVE deformation prediction model.The modified model can provide a better understanding of the rutting behavior of asphalt pavement.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11102149,10872157,11072185,and 10972174)
文摘A series of isometric,radially expanding tubular units,made of dielectric elastomer with compliant electrodes,constitute a soft linear peristaltic pump with distributed actuation for transport of incompressible fluids.Based on the Gent strain energy model,this paper theoretically analyzes the homogeneous large deformation of the peristaltic unit.We discuss the effects of axial prestretch on the actuation of the actuator.We then predict the maximum actuation strain of this actuator which is limited by dielectric strength of the polymer.The results presented here extend the previous study based on linear elasticity,and can predict the electromechanical behaviors of the novel actuator at large deformations.