3D elastic-plastic FE model for simulating the force controlled stretch-bending process of double-cavity aluminum profile was established using hybrid explicit−implicit solvent method.Considering the computational acc...3D elastic-plastic FE model for simulating the force controlled stretch-bending process of double-cavity aluminum profile was established using hybrid explicit−implicit solvent method.Considering the computational accuracy and efficiency,the optimal choices of numerical parameters and algorithms in FE modelling were determined.The formation mechanisms of cross-section distortion and springback were revealed.The effects of pre-stretching,post-stretching,friction,and the addition of internal fillers on forming quality were investigated.The results show that the stress state of profile in stretch-bending is uniaxial with only a circumferential stress.The stress distribution along the length direction of profile is non-uniform and the maximum tensile stress is located at a certain distance away from the center of profile.As aluminum profile is gradually attached to bending die,the distribution characteristic of cross-section distortion along the length direction of profile changes from V-shape to W-shape.After unloading the forming tools,cross-section distortion decreases obviously due to the stress relaxation,with a maximum distortion difference of 13%before and after unloading.As pre-stretching and post-stretching forces increase,cross-section distortion increases gradually,while springback first decreases and then remains unchanged.With increasing friction between bending die and profile,cross-section distortion slightly decreases,while springback increases.Cross-section distortion decreases by 83%with adding PVC fillers into the cavities of profile,while springback increases by 192.2%.展开更多
The nonsplitting perfectly matched layer (NPML) absorbing boundary condition (ABC) was first provided by Wang and Tang (2003) for the finite-difference simulation of elastic wave propagation in solids. In this p...The nonsplitting perfectly matched layer (NPML) absorbing boundary condition (ABC) was first provided by Wang and Tang (2003) for the finite-difference simulation of elastic wave propagation in solids. In this paper, the method is developed to extend the NPML to simulating elastic wave propagation in poroelastic media. Biot's equations are discretized and approximated to a staggered-grid by applying a fourth-order accurate central difference in space and a second-order accurate central difference in time. A cylindrical twolayer seismic model and a borehole model are chosen to validate the effectiveness of the NPML. The results show that the numerical solutions agree well with the solutions of the discrete wavenumber (DW) method.展开更多
The Finite Difference (FD) method is an important method for seismic numerical simulations. It helps us understand regular patterns in seismic wave propagation, analyze seismic attributes, and interpret seismic data...The Finite Difference (FD) method is an important method for seismic numerical simulations. It helps us understand regular patterns in seismic wave propagation, analyze seismic attributes, and interpret seismic data. However, because of its discretization, the FD method is only stable under certain conditions. The Arbitrary Difference Precise Integration (ADPI) method is based on the FD method and adopts an integration scheme in the time domain and an arbitrary difference scheme in the space domain. Therefore, the ADPI method is a semi-analytical method. In this paper, we deduce the formula for the ADPI method based on the 3D elastic equation and improve its stability. In forward modeling cases, the ADPI method was implemented in 2D and 3D elastic wave equation forward modeling. Results show that the travel time of the reflected seismic wave is accurate. Compared with the acoustic wave field, the elastic wave field contains more wave types, including PS- and PP- reflected waves, transmitted waves, and diffracted waves, which is important to interpretation of seismic data. The method can be easily applied to elastic wave equation numerical simulations for eoloical models.展开更多
The experimental tests for limestone specimens at 700 °C in uniaxial compression were carried out to inves- tigate the mechanical effects of loading rates on limestone by using a MTS810 rock mechanics servo- cont...The experimental tests for limestone specimens at 700 °C in uniaxial compression were carried out to inves- tigate the mechanical effects of loading rates on limestone by using a MTS810 rock mechanics servo- controlled testing system considering the loading rate as a variable. The mechanical properties of limestone such as the stress-strain curve, variable characteristics of peak strength and the modulus of elasticity of limestone were studied under the strain rates ranging from 1.1 10à5 to 1.1 10à1 sà1. (1) Sharp decreases were shown for the peak strength and elastic modulus of limestone from 1.1 10à5 to 1.1 10à4 sà1 at 700 °C as well as a downward trend was shown from 1.1 10à4 to 1.1 10à1 sà1 with the rise of the strain rate. (2) The peak strain increased from 1.1 10à5 to 1.1 10à4 sà1, however, there was no obvious changes shown for the peak strain of limestone from 1.1 10à4 to 1.1 10à1 sà1. These results can provide valuable references for the rock blasting effect and design of mine.展开更多
On the basis of the characteristics of broken rock zone, using the program of "discontinuous deformation analysis(DDA)", the changing law of influential factors of discontinuous rock mass in large broken roc...On the basis of the characteristics of broken rock zone, using the program of "discontinuous deformation analysis(DDA)", the changing law of influential factors of discontinuous rock mass in large broken rock zone was researched quantitatively for the first time. Based on the results of computation, the concept of "key part"of roadways and its stability criterion were brought forward, and it was pointed out that in inclined coal and rock seams the"key parts"of roadways are the upper side and the floor of surrounding rocks, especially the former.展开更多
The numerical simulation of extrudate swell is significant in extrusion processing.Precise prediction of extrudate swell is propitious to the control of melt flow and the quality of final products.A mathematical model...The numerical simulation of extrudate swell is significant in extrusion processing.Precise prediction of extrudate swell is propitious to the control of melt flow and the quality of final products.A mathematical model of three-dimensional(3D)viscoelastic flow through elliptical ring die for polymer extrusion was investigated.The penalty function formulation of viscoelastic incompressible fluid was introduced to the finite element model to analyze 3D extrusion problem.The discrete elastic viscous split stress(DEVSS)and streamline-upwind PetrovGalerkin(SUPG)technology were used to obtain stable simulation results.Free surface was updated by updating the streamlines which needs less memory space.According to numerical simulation results,the effect of zero-shear viscosity and elongation parameter on extrudate swell was slight,but with the increase of volumetric flow rate and relax time the extrudate swell ratio increased markedly.Finally,the numerical simulation of extrudate swell flow for low-density polyethylene(LDPE)melts was investigated and the results agreed well with others’work.These conclusions provided quantitative basis for the forecasting extrudate swell ratio and the controlling of extrusion productivity shape.展开更多
A numerical simulation of the interaction between laminar flow with low Reynolds number and a highly flexible elastic sheet is presented. The mathematical model for the simulation includes a three-dimensional finitevo...A numerical simulation of the interaction between laminar flow with low Reynolds number and a highly flexible elastic sheet is presented. The mathematical model for the simulation includes a three-dimensional finitevolume based fluid solver for incompressible viscous flow and a combined finite-discrete element method for the three-dimensional deformation of solid. An immersed boundary method is used to couple the simulation of fluid and solid. It is implemented through a set of immersed boundary points scattered on the solid surface. These points provide a deformable solid wall boundary for the fluid by adding body force to Navier-Stokes equations. The force from the fluid is also obtained for each point and then applied on the boundary nodes of the solid. The vortex-induced vibration of the highly flexible elastic sheet is simulated with the established mathematical model. The simulated results for both swing pattern and oscillation frequency of the elastic sheet in low Reynolds number flow agree well with experimental data.展开更多
We use the QCD inspired model to analyze the ratio of the real to the imaginary for pp and pp elastic scatterings. A calculation for the ratio of the real to the imaginary is performed in which the contributions from ...We use the QCD inspired model to analyze the ratio of the real to the imaginary for pp and pp elastic scatterings. A calculation for the ratio of the real to the imaginary is performed in which the contributions from gluongluon interaction, quark-quark interaction, quark-gluon interaction, and odd eikonal profile function are included. Our results show that the QCD inspired model gives a good fit to the LHC experimental data.展开更多
Proceeding from wave equations, the paper strictly deduced the dispersion relation equation of Love-type channel waves in Standard Linear Solid model. The e quation is a complex one with its real part signifying the d...Proceeding from wave equations, the paper strictly deduced the dispersion relation equation of Love-type channel waves in Standard Linear Solid model. The e quation is a complex one with its real part signifying the dispersion characteristics of the channel wave while the imaginary part, the attenuation characteristics. In calcu lating the attenuation value, the author has set up a mathematical model of a horizon tal symmetric sequence (a three layer sequence of rock-coal-rock), given out some physical parametersl and adopted the dichotomy method that is more of ten used in root resolving of an equatlon. The calculation indicates that the influence of non-elas tic absorption on the attenuation of the propagation of channel wave varies with the frequency. In the frequency band of the Airy phase, the attenuation increases steep like, which is unfavorable for the channel wave seismic prospecting. The study of channel wave attenuation has provided a theoretical basis for the compensation of at tenuation.展开更多
A unified constitutive model is proposed to describe the mechanical behavior of weak sandstone at different time scales.The instantaneous behavior of this material is characterized by the Drucker-Prager elastoplastic ...A unified constitutive model is proposed to describe the mechanical behavior of weak sandstone at different time scales.The instantaneous behavior of this material is characterized by the Drucker-Prager elastoplastic model,while the time-dependent deformation is described in terms of the microstructure evolution.This evolution is numerically simulated by progressive degradation of the elastic modulus and failure strength of the material.The proposed model is used to simulate the instantaneous triaxial compression and the multi-loading creep tests.Generally,good concordance is obtained between numerical simulations and experimental data.The proposed model is capable of describing the main features of these rocks,particularly irreversible deformations,pressure dependency,volumetric transition between compaction and dilatancy,and creep behavior.展开更多
Blast wall can prevent vehicles from approaching the protective building and can reduce the destructive power of shock wave to a certain extent.However,majority of studies on blast walls have some shortcomings.The exp...Blast wall can prevent vehicles from approaching the protective building and can reduce the destructive power of shock wave to a certain extent.However,majority of studies on blast walls have some shortcomings.The explosion test data are few.Most exsiting studies focus on the propagation of shock wave and the influence of blast wall on the propagation of shock wave.Discussion on the main parameters of blast wall design is meagre,such as the design of safety distance,the distance from the blast wall to the protective building,height and width of the blast wall.This paper uses the finite element programme LS-DYNA to design the blast wall.To analyze the convergence of the finite element model and to determine the mesh size of the model,this paper establishes several finite element models with different sizes of meshes to verify the model.Then,the overpressure distribution of the shock wave on the protective building is simulated to implement the blast wall design.The geometric parameters of the blast wall are preliminarily determined.And the influence of the safety distance on the overpressure of the building surface is mainly discussed,so as to determine the final design parameters.When the overpressure is less than 2 kPa,it is considered that there will be no damage to people caused by flying fragments.Eventually,the blast wall height is 3 m,the thickness is 1 m,and the safety distance is 35 m.The proposed method is used to demonstrate the design method,and the final design parameters of the blast wall can thus be used for reference.展开更多
The director in nematic liquid crystal cell with a weak anchoring grating substrate and a strong anchoring planar substrate is relative to the coordinates x and z.The influence of the surface geometry of the grating s...The director in nematic liquid crystal cell with a weak anchoring grating substrate and a strong anchoring planar substrate is relative to the coordinates x and z.The influence of the surface geometry of the grating substrate in the cell on the director profile is numerically simulated using the two-dimensional finite-difference iterative method under the condition of one elastic constant approximation and zero driven voltage.The deepness of groove and the cell gap affect the distribution of director.For the relatively shallow groove and the relatively thick cell gap,the director is only dependent on the coordinate z.For the relatively deep groove and the relatively thin cell gap,the director must be dependent on the two coordinates x and z because of the increased elastic strain energy induced by the grating surface.展开更多
Hydroelasticity caused by water impact is of concem in many applications of ocean engineering/naval architect and is a complicated physical phenomenon. The authors have developed a coupled Eulerian scheme with Lagrang...Hydroelasticity caused by water impact is of concem in many applications of ocean engineering/naval architect and is a complicated physical phenomenon. The authors have developed a coupled Eulerian scheme with Lagrangian particles to combine advantages and to compensate disadvantages in both grid based method and particle based method. In this study, the developed numerical model was applied to hydroelastic problems due to impact pressure such as water entry of an elastic cylinder and elastic tanker motion in wave. The authors showed the numerical results which is overall agreement with experimental results. The proposed numerical scheme can be useful and effectiveness to evaluate hydroelasticity and ship-wave interaction in nonlinear wave motion with breaking.展开更多
In developing the new friction welding technology, the thermal elastic-plastic stress analysis by the finite element method was carried out to seek the suitable welding conditions such as the friction pressure, the fr...In developing the new friction welding technology, the thermal elastic-plastic stress analysis by the finite element method was carried out to seek the suitable welding conditions such as the friction pressure, the friction speed and the upset pressure. The results obtained are as follows: Heat transfer to the specimens and the intermediate material during friction process was made clear; The operational conditions such as the rotation number of the intermediate material and the friction pressure to reach the liquidus in the interface could be estimated; Further, as the overhang length near the interface is well related to the joint efficiency, we tried to obtain the operational conditions by numerical analysis to acquire a certain length of the overhang length near the interface.展开更多
In order to obtain a basic understanding of the unwanted distortions in the pipe wall during the press cutting process, the deformation of a thin-walled round pipe to form a curvilinear end was numerically and experim...In order to obtain a basic understanding of the unwanted distortions in the pipe wall during the press cutting process, the deformation of a thin-walled round pipe to form a curvilinear end was numerically and experimentally studied. Vector analysis was used to study the relationship between the punch shape and the collapse of the cut-end. Stamping experiments on AISI 1020 steel pipe were conducted using different angles a and β defining the shape of the punch. The elasto-plastic finite element method that allows consideration of a ductile fracture was also employed to study the process. The results show that the deformation of the pipe end after press cutting is inβuenced mostly by the shape of the punch. A satisfactory quality of the curvilinear end of the pipe can be obtained if the appropriate geometric parameters of the punch are chosen. The pipe-wall collapse in the upper part of the section is decreased when a and β increase. The recommended values for a and β lie within 30°-50°. The hole on the underside of the punch has less inβuence on the quality of the cut-end, and the wall distortion and the generation of burr on the cut-end can be satisfactorily simulated using the fracture criterion of Brozzo or the normalized criterion of Cockcroft and Latham.展开更多
Expansion of computer technologies allow using numerical simulation in the early stages of aircraft design more and more often. The role of both wind tunnels and initial test flights used to verify the validity of sol...Expansion of computer technologies allow using numerical simulation in the early stages of aircraft design more and more often. The role of both wind tunnels and initial test flights used to verify the validity of solutions seems to be diminishing. Big systems for three-dimensional simulations of Fluid-Structure Interactions (FSI) constitute highly specialized and costly software. Most of the codes are based on many simplifications. In this paper fluid-structure interaction, taking into account the symetric manoeuvre of ultra light plane, is concerned. This phenomenon has important influence in many aeronautical applications. The method and developed system is demonstrated on ultra light I23 plane. For the first flow the comparison with experiment made in Institute of Aviation Warsaw is presented. Finally, aeroelastic simulation of full 123 aircraft configuration presents the capability of used numerical codes to analyze largescale complex geometries for manoeuvre. All computations were carried out in parallel environment for CFD mesh of order of millions tetrahedral elements.展开更多
Bamboo became the best material choice for sustainable construction because it is fully renewable materials. Indonesian people traditionally choose bamboo for their housing since a long time ago. Bamboo stems usually ...Bamboo became the best material choice for sustainable construction because it is fully renewable materials. Indonesian people traditionally choose bamboo for their housing since a long time ago. Bamboo stems usually have unique shape. Its geometrical shape assumed as tapered hollow pipe. This study aims to find the effect of bamboo taper to its strength properties on center point bending test. The ratio between the Modulus of Rupture (S~) calculated in the center point, and the maximum bending stress along the beam is called strength ratio of taper (Ct). The theoretical calculation results Ct value is 1 if the taper lower than 0.023, while Ct value become lower if the taper is higher than 0.023. The survey on Ampel (Bambusa vulgaris Schrad.), Tali (Gigantochloa apus (BI. Ex Schult. f) Kurz), Gombong (Gigantochloa verticillata (Willd.) Munro), and Mayan (Gigantochloa robusta Kurz.) found that the overall taper range is -0.0047-0.0088 and 0-0.0127 for inner and outer taper respectively. On that overall range the Ct value is always 1, so it is reasonable to ignore the taper effect on one point bending test.展开更多
Hydroelastic behavior of an elastic wedge impacting on calm water surface was investigated. A partitioned approach by coupling finite difference method (FDM) and finite element method (FEM) was developed to analyz...Hydroelastic behavior of an elastic wedge impacting on calm water surface was investigated. A partitioned approach by coupling finite difference method (FDM) and finite element method (FEM) was developed to analyze the fluid structure interaction (FSI) problem. The FDM, in which the Constraint Interpolation Profile (CIP) method was applied, was used for solving the flow field in a fixed regular Cartesian grid system. Free surface was captured by the Tangent of Hyperbola for Interface Capturing with Slope Weighting (THINC/SW) scheme. The FEM was applied for calculating the structural deformation. A volume weighted method, which was based on the immersed boundary (IB) method, was adopted for coupling the FDM and the FEM together. An elastic wedge water entry problem was calculated by the coupled FDM-FEM method. Also a comparison between the current numerical results and the published results indicate that the coupled FDM-FEM method has reasonably good accuracy in predicting the impact force.展开更多
基金the National Natural Science Foundation of China(Nos.52005244,U20A20275)the Natural Science Foundation of Hunan Province,China(Nos.2021JJ30573,2023JJ60193)the Open Fund of State Key Laboratory of Advanced Design and Manufacture for Vehicle Body,China(No.31715011)。
文摘3D elastic-plastic FE model for simulating the force controlled stretch-bending process of double-cavity aluminum profile was established using hybrid explicit−implicit solvent method.Considering the computational accuracy and efficiency,the optimal choices of numerical parameters and algorithms in FE modelling were determined.The formation mechanisms of cross-section distortion and springback were revealed.The effects of pre-stretching,post-stretching,friction,and the addition of internal fillers on forming quality were investigated.The results show that the stress state of profile in stretch-bending is uniaxial with only a circumferential stress.The stress distribution along the length direction of profile is non-uniform and the maximum tensile stress is located at a certain distance away from the center of profile.As aluminum profile is gradually attached to bending die,the distribution characteristic of cross-section distortion along the length direction of profile changes from V-shape to W-shape.After unloading the forming tools,cross-section distortion decreases obviously due to the stress relaxation,with a maximum distortion difference of 13%before and after unloading.As pre-stretching and post-stretching forces increase,cross-section distortion increases gradually,while springback first decreases and then remains unchanged.With increasing friction between bending die and profile,cross-section distortion slightly decreases,while springback increases.Cross-section distortion decreases by 83%with adding PVC fillers into the cavities of profile,while springback increases by 192.2%.
基金This research was supported by Natural Science Foundation of China (No. 403740043).
文摘The nonsplitting perfectly matched layer (NPML) absorbing boundary condition (ABC) was first provided by Wang and Tang (2003) for the finite-difference simulation of elastic wave propagation in solids. In this paper, the method is developed to extend the NPML to simulating elastic wave propagation in poroelastic media. Biot's equations are discretized and approximated to a staggered-grid by applying a fourth-order accurate central difference in space and a second-order accurate central difference in time. A cylindrical twolayer seismic model and a borehole model are chosen to validate the effectiveness of the NPML. The results show that the numerical solutions agree well with the solutions of the discrete wavenumber (DW) method.
基金supported by the National Science and Technology Major Project of China(Grant No. 2011ZX05004-003,2011ZX05014-006-006)the National Key Basic Research Program of China(Grant No. 2013CB228602)the Natural Science Foundation of China(Grant No. 40974066)
文摘The Finite Difference (FD) method is an important method for seismic numerical simulations. It helps us understand regular patterns in seismic wave propagation, analyze seismic attributes, and interpret seismic data. However, because of its discretization, the FD method is only stable under certain conditions. The Arbitrary Difference Precise Integration (ADPI) method is based on the FD method and adopts an integration scheme in the time domain and an arbitrary difference scheme in the space domain. Therefore, the ADPI method is a semi-analytical method. In this paper, we deduce the formula for the ADPI method based on the 3D elastic equation and improve its stability. In forward modeling cases, the ADPI method was implemented in 2D and 3D elastic wave equation forward modeling. Results show that the travel time of the reflected seismic wave is accurate. Compared with the acoustic wave field, the elastic wave field contains more wave types, including PS- and PP- reflected waves, transmitted waves, and diffracted waves, which is important to interpretation of seismic data. The method can be easily applied to elastic wave equation numerical simulations for eoloical models.
基金supported by the Fundamental Research Funds for the Central Universities (No. 2011QNB05)the National Basic Research Program of China (No. 2007CB209400)+2 种基金the National Natural Science Foundation of China (Nos. 51074166 and 51104128)the Research Project for Ministry of Housing and Urban-Rural Development of China (No. 2011-K3-5)the Innovation Project of Graduate Students in Jiangsu Province (No. CX09B_108Z)
文摘The experimental tests for limestone specimens at 700 °C in uniaxial compression were carried out to inves- tigate the mechanical effects of loading rates on limestone by using a MTS810 rock mechanics servo- controlled testing system considering the loading rate as a variable. The mechanical properties of limestone such as the stress-strain curve, variable characteristics of peak strength and the modulus of elasticity of limestone were studied under the strain rates ranging from 1.1 10à5 to 1.1 10à1 sà1. (1) Sharp decreases were shown for the peak strength and elastic modulus of limestone from 1.1 10à5 to 1.1 10à4 sà1 at 700 °C as well as a downward trend was shown from 1.1 10à4 to 1.1 10à1 sà1 with the rise of the strain rate. (2) The peak strain increased from 1.1 10à5 to 1.1 10à4 sà1, however, there was no obvious changes shown for the peak strain of limestone from 1.1 10à4 to 1.1 10à1 sà1. These results can provide valuable references for the rock blasting effect and design of mine.
文摘On the basis of the characteristics of broken rock zone, using the program of "discontinuous deformation analysis(DDA)", the changing law of influential factors of discontinuous rock mass in large broken rock zone was researched quantitatively for the first time. Based on the results of computation, the concept of "key part"of roadways and its stability criterion were brought forward, and it was pointed out that in inclined coal and rock seams the"key parts"of roadways are the upper side and the floor of surrounding rocks, especially the former.
基金Supported by the National Science Foundation for Distinguished Young Scholars of China(50425517) the Shandong Province Natural Science Foundation(Y2007F59)
文摘The numerical simulation of extrudate swell is significant in extrusion processing.Precise prediction of extrudate swell is propitious to the control of melt flow and the quality of final products.A mathematical model of three-dimensional(3D)viscoelastic flow through elliptical ring die for polymer extrusion was investigated.The penalty function formulation of viscoelastic incompressible fluid was introduced to the finite element model to analyze 3D extrusion problem.The discrete elastic viscous split stress(DEVSS)and streamline-upwind PetrovGalerkin(SUPG)technology were used to obtain stable simulation results.Free surface was updated by updating the streamlines which needs less memory space.According to numerical simulation results,the effect of zero-shear viscosity and elongation parameter on extrudate swell was slight,but with the increase of volumetric flow rate and relax time the extrudate swell ratio increased markedly.Finally,the numerical simulation of extrudate swell flow for low-density polyethylene(LDPE)melts was investigated and the results agreed well with others’work.These conclusions provided quantitative basis for the forecasting extrudate swell ratio and the controlling of extrusion productivity shape.
基金Supported by Marie Curie International Incoming Fellowship (No. PIIF-GA-2009-253453)
文摘A numerical simulation of the interaction between laminar flow with low Reynolds number and a highly flexible elastic sheet is presented. The mathematical model for the simulation includes a three-dimensional finitevolume based fluid solver for incompressible viscous flow and a combined finite-discrete element method for the three-dimensional deformation of solid. An immersed boundary method is used to couple the simulation of fluid and solid. It is implemented through a set of immersed boundary points scattered on the solid surface. These points provide a deformable solid wall boundary for the fluid by adding body force to Navier-Stokes equations. The force from the fluid is also obtained for each point and then applied on the boundary nodes of the solid. The vortex-induced vibration of the highly flexible elastic sheet is simulated with the established mathematical model. The simulated results for both swing pattern and oscillation frequency of the elastic sheet in low Reynolds number flow agree well with experimental data.
基金The project supported in part by National Natural Science Foundation of China under Grant Nos. 10647002 and 10565001 and the Science Foundation of Guangxi Province of China under Grant Nos. 0481030, 0542042, and 0575020
文摘We use the QCD inspired model to analyze the ratio of the real to the imaginary for pp and pp elastic scatterings. A calculation for the ratio of the real to the imaginary is performed in which the contributions from gluongluon interaction, quark-quark interaction, quark-gluon interaction, and odd eikonal profile function are included. Our results show that the QCD inspired model gives a good fit to the LHC experimental data.
文摘Proceeding from wave equations, the paper strictly deduced the dispersion relation equation of Love-type channel waves in Standard Linear Solid model. The e quation is a complex one with its real part signifying the dispersion characteristics of the channel wave while the imaginary part, the attenuation characteristics. In calcu lating the attenuation value, the author has set up a mathematical model of a horizon tal symmetric sequence (a three layer sequence of rock-coal-rock), given out some physical parametersl and adopted the dichotomy method that is more of ten used in root resolving of an equatlon. The calculation indicates that the influence of non-elas tic absorption on the attenuation of the propagation of channel wave varies with the frequency. In the frequency band of the Airy phase, the attenuation increases steep like, which is unfavorable for the channel wave seismic prospecting. The study of channel wave attenuation has provided a theoretical basis for the compensation of at tenuation.
基金Project(51409261)supported by the National Natural Science Foundation of ChinaProjects(ZR2014EEQ014)supported by the Natural Science Foundation of Shandong Province,ChinaProjects(16CX05002A,15CX05039A)supported by the Fundamental Research Funds for the Central Universities of China
文摘A unified constitutive model is proposed to describe the mechanical behavior of weak sandstone at different time scales.The instantaneous behavior of this material is characterized by the Drucker-Prager elastoplastic model,while the time-dependent deformation is described in terms of the microstructure evolution.This evolution is numerically simulated by progressive degradation of the elastic modulus and failure strength of the material.The proposed model is used to simulate the instantaneous triaxial compression and the multi-loading creep tests.Generally,good concordance is obtained between numerical simulations and experimental data.The proposed model is capable of describing the main features of these rocks,particularly irreversible deformations,pressure dependency,volumetric transition between compaction and dilatancy,and creep behavior.
基金This work was supported by the National Natural Science Foundation of China(No.51878507).
文摘Blast wall can prevent vehicles from approaching the protective building and can reduce the destructive power of shock wave to a certain extent.However,majority of studies on blast walls have some shortcomings.The explosion test data are few.Most exsiting studies focus on the propagation of shock wave and the influence of blast wall on the propagation of shock wave.Discussion on the main parameters of blast wall design is meagre,such as the design of safety distance,the distance from the blast wall to the protective building,height and width of the blast wall.This paper uses the finite element programme LS-DYNA to design the blast wall.To analyze the convergence of the finite element model and to determine the mesh size of the model,this paper establishes several finite element models with different sizes of meshes to verify the model.Then,the overpressure distribution of the shock wave on the protective building is simulated to implement the blast wall design.The geometric parameters of the blast wall are preliminarily determined.And the influence of the safety distance on the overpressure of the building surface is mainly discussed,so as to determine the final design parameters.When the overpressure is less than 2 kPa,it is considered that there will be no damage to people caused by flying fragments.Eventually,the blast wall height is 3 m,the thickness is 1 m,and the safety distance is 35 m.The proposed method is used to demonstrate the design method,and the final design parameters of the blast wall can thus be used for reference.
基金Supported by Natural Science Foundation of Hebei Province under Grant No.A2010000004the National Natural Science Foundation of China under Grant Nos.10704022 and 60736042the Key Subject Construction Project of Hebei Province University
文摘The director in nematic liquid crystal cell with a weak anchoring grating substrate and a strong anchoring planar substrate is relative to the coordinates x and z.The influence of the surface geometry of the grating substrate in the cell on the director profile is numerically simulated using the two-dimensional finite-difference iterative method under the condition of one elastic constant approximation and zero driven voltage.The deepness of groove and the cell gap affect the distribution of director.For the relatively shallow groove and the relatively thick cell gap,the director is only dependent on the coordinate z.For the relatively deep groove and the relatively thin cell gap,the director must be dependent on the two coordinates x and z because of the increased elastic strain energy induced by the grating surface.
文摘Hydroelasticity caused by water impact is of concem in many applications of ocean engineering/naval architect and is a complicated physical phenomenon. The authors have developed a coupled Eulerian scheme with Lagrangian particles to combine advantages and to compensate disadvantages in both grid based method and particle based method. In this study, the developed numerical model was applied to hydroelastic problems due to impact pressure such as water entry of an elastic cylinder and elastic tanker motion in wave. The authors showed the numerical results which is overall agreement with experimental results. The proposed numerical scheme can be useful and effectiveness to evaluate hydroelasticity and ship-wave interaction in nonlinear wave motion with breaking.
文摘In developing the new friction welding technology, the thermal elastic-plastic stress analysis by the finite element method was carried out to seek the suitable welding conditions such as the friction pressure, the friction speed and the upset pressure. The results obtained are as follows: Heat transfer to the specimens and the intermediate material during friction process was made clear; The operational conditions such as the rotation number of the intermediate material and the friction pressure to reach the liquidus in the interface could be estimated; Further, as the overhang length near the interface is well related to the joint efficiency, we tried to obtain the operational conditions by numerical analysis to acquire a certain length of the overhang length near the interface.
基金Project(CDJZR10110029)supported by the Fundamental Research Funds for the Central Universities in China
文摘In order to obtain a basic understanding of the unwanted distortions in the pipe wall during the press cutting process, the deformation of a thin-walled round pipe to form a curvilinear end was numerically and experimentally studied. Vector analysis was used to study the relationship between the punch shape and the collapse of the cut-end. Stamping experiments on AISI 1020 steel pipe were conducted using different angles a and β defining the shape of the punch. The elasto-plastic finite element method that allows consideration of a ductile fracture was also employed to study the process. The results show that the deformation of the pipe end after press cutting is inβuenced mostly by the shape of the punch. A satisfactory quality of the curvilinear end of the pipe can be obtained if the appropriate geometric parameters of the punch are chosen. The pipe-wall collapse in the upper part of the section is decreased when a and β increase. The recommended values for a and β lie within 30°-50°. The hole on the underside of the punch has less inβuence on the quality of the cut-end, and the wall distortion and the generation of burr on the cut-end can be satisfactorily simulated using the fracture criterion of Brozzo or the normalized criterion of Cockcroft and Latham.
文摘Expansion of computer technologies allow using numerical simulation in the early stages of aircraft design more and more often. The role of both wind tunnels and initial test flights used to verify the validity of solutions seems to be diminishing. Big systems for three-dimensional simulations of Fluid-Structure Interactions (FSI) constitute highly specialized and costly software. Most of the codes are based on many simplifications. In this paper fluid-structure interaction, taking into account the symetric manoeuvre of ultra light plane, is concerned. This phenomenon has important influence in many aeronautical applications. The method and developed system is demonstrated on ultra light I23 plane. For the first flow the comparison with experiment made in Institute of Aviation Warsaw is presented. Finally, aeroelastic simulation of full 123 aircraft configuration presents the capability of used numerical codes to analyze largescale complex geometries for manoeuvre. All computations were carried out in parallel environment for CFD mesh of order of millions tetrahedral elements.
文摘Bamboo became the best material choice for sustainable construction because it is fully renewable materials. Indonesian people traditionally choose bamboo for their housing since a long time ago. Bamboo stems usually have unique shape. Its geometrical shape assumed as tapered hollow pipe. This study aims to find the effect of bamboo taper to its strength properties on center point bending test. The ratio between the Modulus of Rupture (S~) calculated in the center point, and the maximum bending stress along the beam is called strength ratio of taper (Ct). The theoretical calculation results Ct value is 1 if the taper lower than 0.023, while Ct value become lower if the taper is higher than 0.023. The survey on Ampel (Bambusa vulgaris Schrad.), Tali (Gigantochloa apus (BI. Ex Schult. f) Kurz), Gombong (Gigantochloa verticillata (Willd.) Munro), and Mayan (Gigantochloa robusta Kurz.) found that the overall taper range is -0.0047-0.0088 and 0-0.0127 for inner and outer taper respectively. On that overall range the Ct value is always 1, so it is reasonable to ignore the taper effect on one point bending test.
基金the support of Grants-in-Aid for Scientific Research (B), MEXT (No.24360358)
文摘Hydroelastic behavior of an elastic wedge impacting on calm water surface was investigated. A partitioned approach by coupling finite difference method (FDM) and finite element method (FEM) was developed to analyze the fluid structure interaction (FSI) problem. The FDM, in which the Constraint Interpolation Profile (CIP) method was applied, was used for solving the flow field in a fixed regular Cartesian grid system. Free surface was captured by the Tangent of Hyperbola for Interface Capturing with Slope Weighting (THINC/SW) scheme. The FEM was applied for calculating the structural deformation. A volume weighted method, which was based on the immersed boundary (IB) method, was adopted for coupling the FDM and the FEM together. An elastic wedge water entry problem was calculated by the coupled FDM-FEM method. Also a comparison between the current numerical results and the published results indicate that the coupled FDM-FEM method has reasonably good accuracy in predicting the impact force.