Taking into account three important porous media mechanisms during wave propagation (the Biot-flow, squirt-flow, and solid-skeleton viscoelastic mechanisms), we introduce water saturation into the dynamic governing ...Taking into account three important porous media mechanisms during wave propagation (the Biot-flow, squirt-flow, and solid-skeleton viscoelastic mechanisms), we introduce water saturation into the dynamic governing equations of wave propagation by analyzing the effective medium theory and then providing a viscoelastic Biot/squirt (BISQ) model which can analyze the wave propagation problems in a partially viscous pore fluid saturated porous media. In this model, the effects of pore fluid distribution patterns on the effective bulk modulus at different frequencies are considered. Then we derive the wave dynamic equations in the time-space domain. The phase velocity and the attenuation coefficient equations of the viscoelatic BISQ model in the frequency-wavenumber domain are deduced through a set of plane harmonic solution assumptions. Finally, by means of numerical simulations, we investigate the effects of water saturation, permeability, and frequency on compressional wave velocity and attenuation. Based on tight sandstone and carbonate experimental observed data, the compressional wave velocities of partially saturated reservoir rocks are calculated. The compressional wave velocity in carbonate reservoirs is more sensitive to gas saturation than in sandstone reservoirs.展开更多
The double degrees-of-freedom(DOFs)parallel model is adopted to analyze static vertical human-induced vibration with the finite element analysis(FEA)method.In the first-order symmetric vibration mode,the periods o...The double degrees-of-freedom(DOFs)parallel model is adopted to analyze static vertical human-induced vibration with the finite element analysis(FEA)method.In the first-order symmetric vibration mode,the periods of the spring-mass model gradually decrease with the increase in K1 and K2,but they are always greater than the period of the add-on mass model.Meanwhile,the periods of the spring-mass model decrease with the decrease in m1 and m2,but they are always greater than the period of the hollow bridge model.Since the human's two degrees-of-freedom vibrate in the same direction as that of the bridge mid-span,the existence of human's rigidity leads to the reduction in the rigidity of the spring-mass model.In the second-order symmetric vibration mode,the changes of rigidity K2 and mass m2 result in the disappearance or occurrence of some vibration modes.It can be concluded that compared with the spring-mass model,the results of the add-on mass model lean to lack of safety to the structure;besides,the DOF with a smaller ratio of mass to rigidity plays the chief role in the vibration of the structure.展开更多
Zn-22 Al alloy closed-cell foams were fabricated by melt foaming process using hydride foaming agent. The compressive properties were investigated under quasi-static condition. The structure of the foamed material was...Zn-22 Al alloy closed-cell foams were fabricated by melt foaming process using hydride foaming agent. The compressive properties were investigated under quasi-static condition. The structure of the foamed material was analyzed during compression test to reveal the relationship between morphology and compressive behavior. The results show that the stress-strain behavior is typical of closed-cell metal foams and mostly of brittle type. Governing deformation mechanism at plateau stage is identified to be brittle crushing. A substantial increase in compressive strength of Zn-22 Al foams was obtained. The agreement between compressive properties and Gibson-Ashby model was also detected.展开更多
In order to investigate the suction-dependent properties of subgrade granular material and its effect on pavement responses,coupled hydro-mechanical simulations were conducted in Abaqus.A suction-dependent resilient m...In order to investigate the suction-dependent properties of subgrade granular material and its effect on pavement responses,coupled hydro-mechanical simulations were conducted in Abaqus.A suction-dependent resilient modulus model was integrated into the commercial finite element(FE)code Abaqus by developing a user-defined material(UMAT)subroutine.The developed model was validated by triaxial test results under different suction conditions and good agreement was achieved.A three-dimensional(3D)FE pavement model was established and the suction-dependent properties of subgrade granular material was characterized by the developed constitutive model.Hydro-mechanical pavement responses subjected to three moisture states and the falling weight deflectometer(FWD)load were calculated.Simulation results reveal that the resilient modulus of subgrade granular material is sensitive to suction and stress states;high groundwater table decreases the overall resilient moduli of subgrade structure due to suction reduction,leading to the increase of the maximum surface deflection,the tensile strain at bottom of the surface layer,compressive strain on top of subgrade,and consequently,deterioration in pavement performance.展开更多
Estimating weak rock mass modulus has historically proven difficult although this mechanical property is an important input to many types of geotechnical analyses. An empirical database of weak rock mass modulus with ...Estimating weak rock mass modulus has historically proven difficult although this mechanical property is an important input to many types of geotechnical analyses. An empirical database of weak rock mass modulus with associated detailed geotechnical parameters was assembled from plate loading tests per- formed at underground mines in Nevada, the Bakhtiary Dam project, and Portugues Dam project. The database was used to assess the accuracy of published single-variate models and to develop a multivari- ate model for predicting in-situ weak rock mass modulus when limited geoteehnical data are available. Only two of the published models were adequate for predicting modulus of weak rock masses over lim- ited ranges of alteration intensities, and none of the models provided good estimates of modulus over a range of geotechnical properties. In light of this shortcoming, a multivariate model was developed from the weak rock mass modulus dataset, and the new model is exponential in form and has the following independent variables: (1) average block size or joint spacing, (2) field estimated rock strength, (3) dis- continuity roughness, and (4) discontinuity infilling hardness. The multivariate model provided better estimates of modulus for both hard-blocky rock masses and intensely-altered rock masses.展开更多
Straightening machine is widely used for improving the quality of the defective mild steel plates.In general,the capacity of straightening machine is affected by material properties,the initial shape of the incoming p...Straightening machine is widely used for improving the quality of the defective mild steel plates.In general,the capacity of straightening machine is affected by material properties,the initial shape of the incoming plate and the plastic ratio.The mechanics model describing the capacity of the machine was developed.The deviation of the straightening capacity curves was studied.Then,the presented model was evaluated by comparative study to filed production data.Finally,the influences of overstretch,straightening speed,strengthening coefficient,elastic modulus,width of the plate on the straightening capacity were studied.It is convenient to determine whether the plate can be straightened or not by a series of straightening capacity curves.The straightening speed,width of the plate and elastic modulus of the material are more sensitive to the straightening capacity than the strengthening coefficient.展开更多
Uniaxial tensile tests and scanning electron microscopy(SEM)experiments were carried out on the porous FeAl intermetallics(porosities of 41.1%,44.2%and 49.3%,pore size of 15−30μm)prepared by our research group to stu...Uniaxial tensile tests and scanning electron microscopy(SEM)experiments were carried out on the porous FeAl intermetallics(porosities of 41.1%,44.2%and 49.3%,pore size of 15−30μm)prepared by our research group to study the macroscopic mechanical properties and microscopic failure mechanism.The results show that the tensileσ−εcurves of the porous FeAl with different porosities can be divided into four stages:elasticity,yielding,strengthening and failure,without necking phenomenon.The elastic modulus,ultimate strength and elongation decrease with the increase of porosity and the elongation is much lower than 5%.A macroscopic brittle fracture appears,and the microscopic fracture mechanism is mainly intergranular fracture,depending on the Al content in the dense FeAl intermetallics.In addition,the stochastic porous model(SPM)with random pore structure size and distribution is established by designing a self-compiling generation program in FORTRAN language.Combined with the secondary development platform of finite element software ANSYS,the effective elastic moduli of the porous FeAl can be determined by elastic analysis of SPM and they are close to the experimental values,which can verify the validity of the established SPM for analyzing the elastic properties of the porous material.展开更多
Some compounds of group III-V semiconductor materials exhibit very good piezoelectric,mechanical,and thermal properties and their use in surface acoustic wave(SAW) devices operating specially at GHz frequencies.These ...Some compounds of group III-V semiconductor materials exhibit very good piezoelectric,mechanical,and thermal properties and their use in surface acoustic wave(SAW) devices operating specially at GHz frequencies.These materials have been appreciated for a long time due to their high acoustic velocities,which are important parameters for active microelectromechanical systems(MEMS) devices.For this object,first-principles calculations of the anisotropy and the hydrostatic pressure effect on the mechanical,piezoelectric and some thermal properties of the(B3) boron phosphide are presented,using the density functional perturbation theory(DFPT).The independent elastic and compliance constants,the Reuss modulus,Voigt modulus,and the shear modulus,the Kleinman parameter,the Cauchy and Born coefficients,the elastic modulus,and the Poisson ratio for directions within the important crystallographic planes of this compound under pressure are obtained.The direct and converse piezoelectric coefficients,the longitudinal,transverse,and average sound velocity,the Debye temperature,and the Debye frequency of(B3) boron phosphide under pressure are also presented and compared with available experimental and theoretical data of the literature.展开更多
Numerous experimental studies reveal that the mechanical and deformational behaviors of sands are dependent on the combined effect of void ratio and stress. To predict this complex behavior of sands, a hypo-elastic mo...Numerous experimental studies reveal that the mechanical and deformational behaviors of sands are dependent on the combined effect of void ratio and stress. To predict this complex behavior of sands, a hypo-elastic model is developed based on the cross-anisotropic elasticity model, which involves four parameters: bulk module, tangent Young's module, volume deformation coefficient and Poisson ratio. A parameter defined as virtual peak deviatoric stress dependent on state parameter is introduced into hyperbolic stress strain relationship to determine tangent Young's module. In addition, an existing fitting equation for isotropic compression curves and an existing dilatancy equation, which can consider the effect of state of sands, are employed to determine bulk module and volume deformation coefficient. Thirteen model constants are involved in the proposed model, the values of which are fixed for a sand over a wide range of initial void ratios and initial confining pressures. Well known experimental data for drained and undrained triaxial compression tests of Toyoura sand are successfully modeled.展开更多
The elastic properties, thermodynamic and electronic structures of Mg_2La were investigated by using first-principles. The calculated results show that pressure affects the elastic constants of C_(11) more than that o...The elastic properties, thermodynamic and electronic structures of Mg_2La were investigated by using first-principles. The calculated results show that pressure affects the elastic constants of C_(11) more than that of C_(12) and C_(44). Specifically, higher pressure leads to greater bulk modulus(B), shear modulus(G), and elastic modulus(E). We predict B/G and anisotropy factor A based on the calculated elastic constants. The Debye temperature also increases with increasing pressure. Based on the quasi-harmonic Debye model, we examined the thermodynamic properties. These properties include the normalized volume(V/V_0), bulk modulus(B), heat capacity(C_v), thermal expansion coefficient(α), and Debye temperature(■). Finally, the electronic structures associated with the density of states(DOS) and Mulliken population are analyzed.展开更多
The closed loop control model was built up for compensating the springback and enhancing the work piece precision.A coupled closed loop algorithm and a finite element method were developed to simulate and correct the ...The closed loop control model was built up for compensating the springback and enhancing the work piece precision.A coupled closed loop algorithm and a finite element method were developed to simulate and correct the springback of incremental sheet forming.A three-dimensional finite element model was established for simulation of springback in incremental sheet forming process.The closed loop algorithm of trajectory profile for the incremental sheet forming based on the wavelet transform combined with fast Fourier transform was constructed.The profile of processing tool path of shallow dishing with spherical surface was designed on the basis of the profile correction algorithm.The result shows that the algorithm can predict an ideal profile of processing track,and the springback error of incremental sheet forming is eliminated effectively.It has good convergence efficiency,and can improve the workpiece dimensional accuracy greatly.展开更多
The finite element method is used to simulate the rectification process of shield machine, to study the relationship between rectification moment and angle and to explore the influence laws of different soil parameter...The finite element method is used to simulate the rectification process of shield machine, to study the relationship between rectification moment and angle and to explore the influence laws of different soil parameters and buried depth on rectification moment. It is hoped that the reference value of rectification moment can be offered to operator, and theoretical foundation can be laid for future automatic rectification technology. The results show that the rectification moment and angle generally exhibit good linear behavior in clay layers with different soil parameters or buried depths, and then the concept of rectification coefficient, that is, the ratio of rectification angle to rectification moment, is proposed; different soil parameters and buried depths have different influences on rectification coefficient, in which elastic modulus has great influence but others have little influences; the simulations of rectification process are preformed in clay layers with different elastic modulus, and fitting results show that elastic modulus and rectification coefficient present the quadratic function relation.展开更多
Since the fouling-releasing ability of silicone elastomers increased as their modulus decreases, we designed and prepared composites with embedded tiny NaC1 crytals that were soluble after their immersion in water, re...Since the fouling-releasing ability of silicone elastomers increased as their modulus decreases, we designed and prepared composites with embedded tiny NaC1 crytals that were soluble after their immersion in water, resulting in water-filled porous elastomers. The scanning electron microscope images confirmed such a designed water-filling porous structure. The existence of many micro-drops of water in these specially designed elastomers decreased the shear storage modulus and increased the loss factors. The decrease of shear modulus plays a leading role here and is directly related to a lower critical peeling-off stress of a pseudo-barnacle on them. Therefore, such a novel preparation with cheap salts instead of an expensive silicone provides a better way to make fouling-release paints with a lower modulus, a lower critical peeling-off stress and a better fouling-release property without a significant decrease of the cross-linking density.展开更多
The resistance loss of transportation was studied and the influences of buoyancy layout,mineral content and elastic modulus of flexible hose were investigated based on three-dimensional finite element model of fluid-s...The resistance loss of transportation was studied and the influences of buoyancy layout,mineral content and elastic modulus of flexible hose were investigated based on three-dimensional finite element model of fluid-solid interaction by MSC.MARC/MENTAT software.The numerical results show that the resistance losses increase with the increase of mineral content Cv and velocity of internal fluid v and decrease with the increase of elastic modulus E of flexible hose.The buoyancy layout and the velocity of internal fluid have greater impacts on the resistance losses than the elastic modulus of flexible hose.In order to reduce the resistance losses and improve the efficiency of the deep-ocean mining,Cv and v must be restricted in a suitable range (e.g.10%-25% and 2.5-4 m/s).Effective buoyancy layout (such as Scheme C and D) should be adopted and the suitable material of moderate E should be used for the flexible hose in deep-ocean mining.展开更多
The surface deformation after fully mechanized back filling mining was analyzed.The surface deformation for different backfill materials was predicted by an equivalent mining height model and numerical simulations.The...The surface deformation after fully mechanized back filling mining was analyzed.The surface deformation for different backfill materials was predicted by an equivalent mining height model and numerical simulations.The results suggest that:(1) As the elastic modulus,E,of the backfill material increases the surface subsidence decreases.The rate of subsidence decrease drops after E is larger than 5 GPa;(2) Fully mechanized back fill mining technology can effectively control surface deformation.The resulting surface deformation is within the specification grade I,which means surface maintenance is not needed.A site survey showed that the equivalent mining height model is capable of predicting and analyzing surface deformation and that the model is conservative enough for engineering safety.Finally,the significance of establishing a complete error correction system based on error analysis and correction is discussed.展开更多
Employing an ideal elasto-plastic model,the typically used strength reduction method reduced the strength of all soil elements of a slope.Therefore,this method was called the global strength reduction method(GSRM).How...Employing an ideal elasto-plastic model,the typically used strength reduction method reduced the strength of all soil elements of a slope.Therefore,this method was called the global strength reduction method(GSRM).However,the deformation field obtained by GSRM could not reflect the real deformation of a slope when the slope became unstable.For most slopes,failure occurs once the strength of some regional soil is sufficiently weakened; thus,the local strength reduction method(LSRM)was proposed to analyze slope stability.In contrast with GSRM,LSRM only reduces the strength of local soil,while the strength of other soil remains unchanged.Therefore,deformation by LSRM is more reasonable than that by GSRM.In addition,the accuracy of the slope's deformation depends on the constitutive model to a large degree,and the variable-modulus elasto-plastic model was thus adopted.This constitutive model was an improvement of the Duncan–Chang model,which modified soil's deformation modulus according to stress level,and it thus better reflected the plastic feature of soil.Most importantly,the parameters of the variable-modulus elasto-plastic model could be determined through in-situ tests,and parameters determination by plate loading test and pressuremeter test were introduced.Therefore,it is easy to put this model into practice.Finally,LSRM and the variable-modulus elasto-plastic model were used to analyze Egongdai ancient landslide.Safety factor,deformation field,and optimal reinforcement measures for Egongdai ancient landslide were obtained based on the proposed method.展开更多
We prove a result on the distribution of the general divisor functions in arithmetic progressions to smooth moduli which exceed the square root of the length.
Micropipette aspiration(MA) is widely applied in cell mechanics, however, at small deformations a common model corresponding to the MA is the half-space model wherein the finite cell size and cell compressibility are ...Micropipette aspiration(MA) is widely applied in cell mechanics, however, at small deformations a common model corresponding to the MA is the half-space model wherein the finite cell size and cell compressibility are neglected. This study extends the half-space model by accounting for the influence of cell geometry and compressibility(sphere model). Using a finite element analysis of cell aspiration into a micropipette, an elastic approximation formula of the aspirated length was derived for the sphere model. The approximation formula includes the geometry parameter of the sphere model(ζ = R/a, R is the radius of the cell, and a is the inner radius of the micropipette) and the Poisson's ratio v of the cell. The results indicate that the parameter and Poisson's ratio v markedly affect the aspirated length, particularly for small and v. When ζ→∞ and v→0.5,the approximation formula tends to the analytical solution for the half-space model. In the incompressible case(v = 0.5), within the general experimental range(ζ varying from 2 to 4), the difference between the analytical solution and the approximate one is significant, and is up to 29% of the approximation solution when ζ= 2. Additionally, parametere was introduced to evaluate the error of elastic moduli between the half-space model and sphere model. Based on the approximation formula, the ζ thresholds, beyond which e becomes larger than 10% and 20%, were derived.展开更多
The process of liver fibrosis changes the rheological properties of liver tissue.This study characterizes and compares liver fibrosis stages from F0 to F4 in rats in terms of shear viscoelastic moduli.Here two viscoel...The process of liver fibrosis changes the rheological properties of liver tissue.This study characterizes and compares liver fibrosis stages from F0 to F4 in rats in terms of shear viscoelastic moduli.Here two viscoelastic models,the Zener model and Voigt model,were applied to experimental data of rheometer tests and then values of elasticity and viscosity were estimated for each fibrosis stage.The results demonstrate that moderate fibrosis(≤F2) has a good correlation with liver viscoelasticity.The mean Zener elasticity E1 increases from(0.452±0.094) kPa(F0) to(1.311±0.717) kPa(F2),while the mean Voigt elasticity E increases from(0.618±0.089) kPa(F0) to(1.701±0.844) kPa(F2).The mean Zener viscosity increases from(3.499±0.186) Pa·s(F0) to(4.947±1.811) Pa·s(F2) and the mean Voigt viscosity increases from(3.379±0.316) Pa·s(F0) to(4.625±1.296) Pa·s(F2).Compared with viscosity,the elasticity shows smaller variations at stages F1 and F2 no matter what viscoelastic model is used.Therefore,the estimated elasticity is more effective than viscosity for differentiating the fibrosis stages from F0 to F2.展开更多
基金supported by the National Natural Science Foundation of China (No. 11002025, 40114066)the National Basic Research Program of China (973 Program) (No.2007CB209505)the RIPED Youth Innovation Foundation (No. 2010-A-26-01)
文摘Taking into account three important porous media mechanisms during wave propagation (the Biot-flow, squirt-flow, and solid-skeleton viscoelastic mechanisms), we introduce water saturation into the dynamic governing equations of wave propagation by analyzing the effective medium theory and then providing a viscoelastic Biot/squirt (BISQ) model which can analyze the wave propagation problems in a partially viscous pore fluid saturated porous media. In this model, the effects of pore fluid distribution patterns on the effective bulk modulus at different frequencies are considered. Then we derive the wave dynamic equations in the time-space domain. The phase velocity and the attenuation coefficient equations of the viscoelatic BISQ model in the frequency-wavenumber domain are deduced through a set of plane harmonic solution assumptions. Finally, by means of numerical simulations, we investigate the effects of water saturation, permeability, and frequency on compressional wave velocity and attenuation. Based on tight sandstone and carbonate experimental observed data, the compressional wave velocities of partially saturated reservoir rocks are calculated. The compressional wave velocity in carbonate reservoirs is more sensitive to gas saturation than in sandstone reservoirs.
文摘The double degrees-of-freedom(DOFs)parallel model is adopted to analyze static vertical human-induced vibration with the finite element analysis(FEA)method.In the first-order symmetric vibration mode,the periods of the spring-mass model gradually decrease with the increase in K1 and K2,but they are always greater than the period of the add-on mass model.Meanwhile,the periods of the spring-mass model decrease with the decrease in m1 and m2,but they are always greater than the period of the hollow bridge model.Since the human's two degrees-of-freedom vibrate in the same direction as that of the bridge mid-span,the existence of human's rigidity leads to the reduction in the rigidity of the spring-mass model.In the second-order symmetric vibration mode,the changes of rigidity K2 and mass m2 result in the disappearance or occurrence of some vibration modes.It can be concluded that compared with the spring-mass model,the results of the add-on mass model lean to lack of safety to the structure;besides,the DOF with a smaller ratio of mass to rigidity plays the chief role in the vibration of the structure.
文摘Zn-22 Al alloy closed-cell foams were fabricated by melt foaming process using hydride foaming agent. The compressive properties were investigated under quasi-static condition. The structure of the foamed material was analyzed during compression test to reveal the relationship between morphology and compressive behavior. The results show that the stress-strain behavior is typical of closed-cell metal foams and mostly of brittle type. Governing deformation mechanism at plateau stage is identified to be brittle crushing. A substantial increase in compressive strength of Zn-22 Al foams was obtained. The agreement between compressive properties and Gibson-Ashby model was also detected.
基金The Science and Technology Project of China Communications Construction(No.2015-ZJKJ-26)
文摘In order to investigate the suction-dependent properties of subgrade granular material and its effect on pavement responses,coupled hydro-mechanical simulations were conducted in Abaqus.A suction-dependent resilient modulus model was integrated into the commercial finite element(FE)code Abaqus by developing a user-defined material(UMAT)subroutine.The developed model was validated by triaxial test results under different suction conditions and good agreement was achieved.A three-dimensional(3D)FE pavement model was established and the suction-dependent properties of subgrade granular material was characterized by the developed constitutive model.Hydro-mechanical pavement responses subjected to three moisture states and the falling weight deflectometer(FWD)load were calculated.Simulation results reveal that the resilient modulus of subgrade granular material is sensitive to suction and stress states;high groundwater table decreases the overall resilient moduli of subgrade structure due to suction reduction,leading to the increase of the maximum surface deflection,the tensile strain at bottom of the surface layer,compressive strain on top of subgrade,and consequently,deterioration in pavement performance.
基金funded by the National Institute of Occupational Safety and Health through research contract 200-2011-39965(Principal Investigator Dr.Kallu)University of Nevada,Reno,NV
文摘Estimating weak rock mass modulus has historically proven difficult although this mechanical property is an important input to many types of geotechnical analyses. An empirical database of weak rock mass modulus with associated detailed geotechnical parameters was assembled from plate loading tests per- formed at underground mines in Nevada, the Bakhtiary Dam project, and Portugues Dam project. The database was used to assess the accuracy of published single-variate models and to develop a multivari- ate model for predicting in-situ weak rock mass modulus when limited geoteehnical data are available. Only two of the published models were adequate for predicting modulus of weak rock masses over lim- ited ranges of alteration intensities, and none of the models provided good estimates of modulus over a range of geotechnical properties. In light of this shortcoming, a multivariate model was developed from the weak rock mass modulus dataset, and the new model is exponential in form and has the following independent variables: (1) average block size or joint spacing, (2) field estimated rock strength, (3) dis- continuity roughness, and (4) discontinuity infilling hardness. The multivariate model provided better estimates of modulus for both hard-blocky rock masses and intensely-altered rock masses.
文摘Straightening machine is widely used for improving the quality of the defective mild steel plates.In general,the capacity of straightening machine is affected by material properties,the initial shape of the incoming plate and the plastic ratio.The mechanics model describing the capacity of the machine was developed.The deviation of the straightening capacity curves was studied.Then,the presented model was evaluated by comparative study to filed production data.Finally,the influences of overstretch,straightening speed,strengthening coefficient,elastic modulus,width of the plate on the straightening capacity were studied.It is convenient to determine whether the plate can be straightened or not by a series of straightening capacity curves.The straightening speed,width of the plate and elastic modulus of the material are more sensitive to the straightening capacity than the strengthening coefficient.
基金Project(11502307)supported by the National Natural Science Foundation of ChinaProject(2016JJ3187)supported by the Natural Science Foundation of Hunan Province,ChinaProject(50825102)supported by the National Natural Science Funds for Distinguished Young Scholar of China。
文摘Uniaxial tensile tests and scanning electron microscopy(SEM)experiments were carried out on the porous FeAl intermetallics(porosities of 41.1%,44.2%and 49.3%,pore size of 15−30μm)prepared by our research group to study the macroscopic mechanical properties and microscopic failure mechanism.The results show that the tensileσ−εcurves of the porous FeAl with different porosities can be divided into four stages:elasticity,yielding,strengthening and failure,without necking phenomenon.The elastic modulus,ultimate strength and elongation decrease with the increase of porosity and the elongation is much lower than 5%.A macroscopic brittle fracture appears,and the microscopic fracture mechanism is mainly intergranular fracture,depending on the Al content in the dense FeAl intermetallics.In addition,the stochastic porous model(SPM)with random pore structure size and distribution is established by designing a self-compiling generation program in FORTRAN language.Combined with the secondary development platform of finite element software ANSYS,the effective elastic moduli of the porous FeAl can be determined by elastic analysis of SPM and they are close to the experimental values,which can verify the validity of the established SPM for analyzing the elastic properties of the porous material.
文摘Some compounds of group III-V semiconductor materials exhibit very good piezoelectric,mechanical,and thermal properties and their use in surface acoustic wave(SAW) devices operating specially at GHz frequencies.These materials have been appreciated for a long time due to their high acoustic velocities,which are important parameters for active microelectromechanical systems(MEMS) devices.For this object,first-principles calculations of the anisotropy and the hydrostatic pressure effect on the mechanical,piezoelectric and some thermal properties of the(B3) boron phosphide are presented,using the density functional perturbation theory(DFPT).The independent elastic and compliance constants,the Reuss modulus,Voigt modulus,and the shear modulus,the Kleinman parameter,the Cauchy and Born coefficients,the elastic modulus,and the Poisson ratio for directions within the important crystallographic planes of this compound under pressure are obtained.The direct and converse piezoelectric coefficients,the longitudinal,transverse,and average sound velocity,the Debye temperature,and the Debye frequency of(B3) boron phosphide under pressure are also presented and compared with available experimental and theoretical data of the literature.
基金Project(2010BC732101)supported by the National Basic Research Program of China
文摘Numerous experimental studies reveal that the mechanical and deformational behaviors of sands are dependent on the combined effect of void ratio and stress. To predict this complex behavior of sands, a hypo-elastic model is developed based on the cross-anisotropic elasticity model, which involves four parameters: bulk module, tangent Young's module, volume deformation coefficient and Poisson ratio. A parameter defined as virtual peak deviatoric stress dependent on state parameter is introduced into hyperbolic stress strain relationship to determine tangent Young's module. In addition, an existing fitting equation for isotropic compression curves and an existing dilatancy equation, which can consider the effect of state of sands, are employed to determine bulk module and volume deformation coefficient. Thirteen model constants are involved in the proposed model, the values of which are fixed for a sand over a wide range of initial void ratios and initial confining pressures. Well known experimental data for drained and undrained triaxial compression tests of Toyoura sand are successfully modeled.
基金Project(51574176)supported by the National Natural Science Foundation of ChinaProject(143020142-S)supported by the Program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi Province(TYAL),ChinaProject(201603D421028)supported by the Key Research and Development Program of Shanxi Province(International Cooperative Project),China
文摘The elastic properties, thermodynamic and electronic structures of Mg_2La were investigated by using first-principles. The calculated results show that pressure affects the elastic constants of C_(11) more than that of C_(12) and C_(44). Specifically, higher pressure leads to greater bulk modulus(B), shear modulus(G), and elastic modulus(E). We predict B/G and anisotropy factor A based on the calculated elastic constants. The Debye temperature also increases with increasing pressure. Based on the quasi-harmonic Debye model, we examined the thermodynamic properties. These properties include the normalized volume(V/V_0), bulk modulus(B), heat capacity(C_v), thermal expansion coefficient(α), and Debye temperature(■). Finally, the electronic structures associated with the density of states(DOS) and Mulliken population are analyzed.
基金Project(50175034) supported by the National Natural Science Foundation of China
文摘The closed loop control model was built up for compensating the springback and enhancing the work piece precision.A coupled closed loop algorithm and a finite element method were developed to simulate and correct the springback of incremental sheet forming.A three-dimensional finite element model was established for simulation of springback in incremental sheet forming process.The closed loop algorithm of trajectory profile for the incremental sheet forming based on the wavelet transform combined with fast Fourier transform was constructed.The profile of processing tool path of shallow dishing with spherical surface was designed on the basis of the profile correction algorithm.The result shows that the algorithm can predict an ideal profile of processing track,and the springback error of incremental sheet forming is eliminated effectively.It has good convergence efficiency,and can improve the workpiece dimensional accuracy greatly.
基金Project(2007CB714006)supported by the National Basic Research Program of China
文摘The finite element method is used to simulate the rectification process of shield machine, to study the relationship between rectification moment and angle and to explore the influence laws of different soil parameters and buried depth on rectification moment. It is hoped that the reference value of rectification moment can be offered to operator, and theoretical foundation can be laid for future automatic rectification technology. The results show that the rectification moment and angle generally exhibit good linear behavior in clay layers with different soil parameters or buried depths, and then the concept of rectification coefficient, that is, the ratio of rectification angle to rectification moment, is proposed; different soil parameters and buried depths have different influences on rectification coefficient, in which elastic modulus has great influence but others have little influences; the simulations of rectification process are preformed in clay layers with different elastic modulus, and fitting results show that elastic modulus and rectification coefficient present the quadratic function relation.
文摘Since the fouling-releasing ability of silicone elastomers increased as their modulus decreases, we designed and prepared composites with embedded tiny NaC1 crytals that were soluble after their immersion in water, resulting in water-filled porous elastomers. The scanning electron microscope images confirmed such a designed water-filling porous structure. The existence of many micro-drops of water in these specially designed elastomers decreased the shear storage modulus and increased the loss factors. The decrease of shear modulus plays a leading role here and is directly related to a lower critical peeling-off stress of a pseudo-barnacle on them. Therefore, such a novel preparation with cheap salts instead of an expensive silicone provides a better way to make fouling-release paints with a lower modulus, a lower critical peeling-off stress and a better fouling-release property without a significant decrease of the cross-linking density.
基金Project(2006AA09Z240)supported by the National High Technology Research and Development Program of China
文摘The resistance loss of transportation was studied and the influences of buoyancy layout,mineral content and elastic modulus of flexible hose were investigated based on three-dimensional finite element model of fluid-solid interaction by MSC.MARC/MENTAT software.The numerical results show that the resistance losses increase with the increase of mineral content Cv and velocity of internal fluid v and decrease with the increase of elastic modulus E of flexible hose.The buoyancy layout and the velocity of internal fluid have greater impacts on the resistance losses than the elastic modulus of flexible hose.In order to reduce the resistance losses and improve the efficiency of the deep-ocean mining,Cv and v must be restricted in a suitable range (e.g.10%-25% and 2.5-4 m/s).Effective buoyancy layout (such as Scheme C and D) should be adopted and the suitable material of moderate E should be used for the flexible hose in deep-ocean mining.
基金provided by the National Natural Science Foundation of China (Nos. 51074165 and 50834004)
文摘The surface deformation after fully mechanized back filling mining was analyzed.The surface deformation for different backfill materials was predicted by an equivalent mining height model and numerical simulations.The results suggest that:(1) As the elastic modulus,E,of the backfill material increases the surface subsidence decreases.The rate of subsidence decrease drops after E is larger than 5 GPa;(2) Fully mechanized back fill mining technology can effectively control surface deformation.The resulting surface deformation is within the specification grade I,which means surface maintenance is not needed.A site survey showed that the equivalent mining height model is capable of predicting and analyzing surface deformation and that the model is conservative enough for engineering safety.Finally,the significance of establishing a complete error correction system based on error analysis and correction is discussed.
基金Project([2005]205)supported by the Science and Technology Planning Project of Water Resources Department of Guangdong Province,ChinaProject(2012-7)supported by Guangdong Bureau of Highway Administration,ChinaProject(2012210020203)supported by the Fundamental Research Funds for the Central Universities,China
文摘Employing an ideal elasto-plastic model,the typically used strength reduction method reduced the strength of all soil elements of a slope.Therefore,this method was called the global strength reduction method(GSRM).However,the deformation field obtained by GSRM could not reflect the real deformation of a slope when the slope became unstable.For most slopes,failure occurs once the strength of some regional soil is sufficiently weakened; thus,the local strength reduction method(LSRM)was proposed to analyze slope stability.In contrast with GSRM,LSRM only reduces the strength of local soil,while the strength of other soil remains unchanged.Therefore,deformation by LSRM is more reasonable than that by GSRM.In addition,the accuracy of the slope's deformation depends on the constitutive model to a large degree,and the variable-modulus elasto-plastic model was thus adopted.This constitutive model was an improvement of the Duncan–Chang model,which modified soil's deformation modulus according to stress level,and it thus better reflected the plastic feature of soil.Most importantly,the parameters of the variable-modulus elasto-plastic model could be determined through in-situ tests,and parameters determination by plate loading test and pressuremeter test were introduced.Therefore,it is easy to put this model into practice.Finally,LSRM and the variable-modulus elasto-plastic model were used to analyze Egongdai ancient landslide.Safety factor,deformation field,and optimal reinforcement measures for Egongdai ancient landslide were obtained based on the proposed method.
文摘We prove a result on the distribution of the general divisor functions in arithmetic progressions to smooth moduli which exceed the square root of the length.
基金supported by the National Natural Science Foundation of China(Grant No.11032008)the Youth Fund of Taiyuan University of Technology
文摘Micropipette aspiration(MA) is widely applied in cell mechanics, however, at small deformations a common model corresponding to the MA is the half-space model wherein the finite cell size and cell compressibility are neglected. This study extends the half-space model by accounting for the influence of cell geometry and compressibility(sphere model). Using a finite element analysis of cell aspiration into a micropipette, an elastic approximation formula of the aspirated length was derived for the sphere model. The approximation formula includes the geometry parameter of the sphere model(ζ = R/a, R is the radius of the cell, and a is the inner radius of the micropipette) and the Poisson's ratio v of the cell. The results indicate that the parameter and Poisson's ratio v markedly affect the aspirated length, particularly for small and v. When ζ→∞ and v→0.5,the approximation formula tends to the analytical solution for the half-space model. In the incompressible case(v = 0.5), within the general experimental range(ζ varying from 2 to 4), the difference between the analytical solution and the approximate one is significant, and is up to 29% of the approximation solution when ζ= 2. Additionally, parametere was introduced to evaluate the error of elastic moduli between the half-space model and sphere model. Based on the approximation formula, the ζ thresholds, beyond which e becomes larger than 10% and 20%, were derived.
基金supported by the National Natural Science Foundation of China(Nos.61031003,81271651,and 61101025)the Shenzhen Basic Research Project(No.JC201005280501A),China
文摘The process of liver fibrosis changes the rheological properties of liver tissue.This study characterizes and compares liver fibrosis stages from F0 to F4 in rats in terms of shear viscoelastic moduli.Here two viscoelastic models,the Zener model and Voigt model,were applied to experimental data of rheometer tests and then values of elasticity and viscosity were estimated for each fibrosis stage.The results demonstrate that moderate fibrosis(≤F2) has a good correlation with liver viscoelasticity.The mean Zener elasticity E1 increases from(0.452±0.094) kPa(F0) to(1.311±0.717) kPa(F2),while the mean Voigt elasticity E increases from(0.618±0.089) kPa(F0) to(1.701±0.844) kPa(F2).The mean Zener viscosity increases from(3.499±0.186) Pa·s(F0) to(4.947±1.811) Pa·s(F2) and the mean Voigt viscosity increases from(3.379±0.316) Pa·s(F0) to(4.625±1.296) Pa·s(F2).Compared with viscosity,the elasticity shows smaller variations at stages F1 and F2 no matter what viscoelastic model is used.Therefore,the estimated elasticity is more effective than viscosity for differentiating the fibrosis stages from F0 to F2.