The numerical dispersion and computational cost are high for conventional Taylor series expansion staggered-grid finite-difference forward modeling owing to the high frequency of the wavelets and the large grid interv...The numerical dispersion and computational cost are high for conventional Taylor series expansion staggered-grid finite-difference forward modeling owing to the high frequency of the wavelets and the large grid intervals. In this study, the cosine-modulated binomial window function (CMBWF)-based staggered-grid finite-difference method is proposed. Two new parameters, the modulated time and modulated range are used in the new window function and by adjusting these two parameters we obtain different characteristics of the main and side lobes of the amplitude response. Numerical dispersion analysis and elastic wavefield forward modeling suggests that the CMBWF method is more precise and less computationally costly than the conventional Taylor series expansion staggered-grid finite-difference method.展开更多
基金supported by the National Major Research Equipment Development Projects(No.ZDYZ2012-1-02-04)the National Natural Science Foundation of China(No.41474106)
文摘The numerical dispersion and computational cost are high for conventional Taylor series expansion staggered-grid finite-difference forward modeling owing to the high frequency of the wavelets and the large grid intervals. In this study, the cosine-modulated binomial window function (CMBWF)-based staggered-grid finite-difference method is proposed. Two new parameters, the modulated time and modulated range are used in the new window function and by adjusting these two parameters we obtain different characteristics of the main and side lobes of the amplitude response. Numerical dispersion analysis and elastic wavefield forward modeling suggests that the CMBWF method is more precise and less computationally costly than the conventional Taylor series expansion staggered-grid finite-difference method.