The influence of Zr content on the microstructure and mechanical properties of implant Ti-35Nb-4Sn-6Mo-xZr (x=0, 3, 6, 9, 12, 15; mass fraction) alloys was investigated. It is shown that Ti-35Nb-4Sn-6Mo-xZr alloys a...The influence of Zr content on the microstructure and mechanical properties of implant Ti-35Nb-4Sn-6Mo-xZr (x=0, 3, 6, 9, 12, 15; mass fraction) alloys was investigated. It is shown that Ti-35Nb-4Sn-6Mo-xZr alloys appear to have equiaxed single β microstructure after solution treatment at 1023 K. It is found that the grains are refined first and then coarsened with the increase of Zr content. It is also found that Zr element added to titanium alloys has both the solution strengthening and fine-grain strengthening effect, and affects the lattice parameters. With increasing the Zr content of the alloys, the strength increases, the elongation decreases, whereas the elastic modulus firstly increases and then decreases. The mechanical properties of Ti-35Nb-4Sn-6Mo-9Zr alloy are as follows: σb=785 MPa, δ=11%, E=68 GPa, which is more suitable for acting as human implant materials compared to the traditional implant Ti-6Al-4V alloy.展开更多
The effects of T916 thermo-mechanical process on microstructures, mechanical properties and ballistic resistance of 2519A aluminum alloy were investigated by optical microscopy (OM), transmission electron microscopy...The effects of T916 thermo-mechanical process on microstructures, mechanical properties and ballistic resistance of 2519A aluminum alloy were investigated by optical microscopy (OM), transmission electron microscopy (TEM), tensile tests and ballistic resistance test. After T916 treatment, the yield strength, tensile strength and elongation rate of 2519A aluminum alloy reach 501 MPa, 540 MPa and 14%, respectively. And the ballistic limit velocity of 2519A-T916 alloy (30 mm in thickness) is 715 rn/s. The microstructure varies near the sidewalls of crater. The interrupted ageing contributes to these excellent properties of the alloy. During T916 process, the precipitation of Guinier Preston (GP) zone is finer and denser during the interrupted ageing, thus resulting in well precipitated strengthening phase.展开更多
Objective Spontaneous rupture of hepatocellular carcinoma (HCC) is common in Asia and Africa with unclear mechanism. In our previous study, we found that the deposition of immune complex on vascular wall and vascular...Objective Spontaneous rupture of hepatocellular carcinoma (HCC) is common in Asia and Africa with unclear mechanism. In our previous study, we found that the deposition of immune complex on vascular wall and vascular injury were related to the HCC rupture. In this study, the structure of elastin around the small artery was deeply investigated to confirm our previous study. Methods Immunohistochemical technique and transmission electron microscopy were used to study 23 specimens from ruptured HCC and 30 cases of nonruptured HCC. Results The layer of elastin around the vascular wall was significant thicker in patients with ruptured HCC than that in nonruptured HCC. The proliferation of elastin, abnormal distribution of neutrophil elastase and degradation of collagen fibril were predominantly present in the specimens from ruptured HCC. The phenomenon of electron—dense deposit in the elastic lamina that represented the deposition of immune complex, and the signs of infiltrated neutrophils from bloodstream into the vascular wall that caused the vascular injury, also can be found in ruptured HCC. Since the damaged vessels could become stiff and weak, which would more prone to be splitting and results in hemorrhage and the rupture of HCC, we postulated that the preexisting of immune complex deposition and vascular injury may be relate to the ruptured HCC. Conclusion The vascular injury caused by immune complex deposition might relate to ruptured HCC. Key words hepatocellular carcinoma - rupture - elastin - elastase展开更多
The dependence of elastic moduli of shales on the mineralogy and microstructure of shales is important for the prediction of sweet spots and shale gas production. Based on 3D digital images of the microstructure of Lo...The dependence of elastic moduli of shales on the mineralogy and microstructure of shales is important for the prediction of sweet spots and shale gas production. Based on 3D digital images of the microstructure of Longmaxi black shale samples using X-ray CT, we built detailed 3D digital images of cores with porosity properties and mineral contents. Next, we used finite-element (FE) methods to derive the elastic properties of the samples. The FE method can accurately model the shale mineralogy. Particular attention is paid to the derived elastic properties and their dependence on porosity and kerogen. The elastic moduli generally decrease with increasing porosity and kerogen, and there is a critical porosity (0.75) and kerogen content (ca. ≤3%) over which the elastic moduli decrease rapidly and slowly, respectively. The derived elastic moduli of gas- and oil-saturated digital cores differ little probably because of the low porosity (4.5%) of the Longmaxi black shale. Clearly, the numerical experiments demonstrated the feasibility of combining microstructure images of shale samples with elastic moduli calculations to predict shale properties.展开更多
The solubilization of elastin by Bacillus licheniformis elastase cannot be analyzed by conventional kinetic methods because the biologically relevant substrate is insoluble and the concentration of enzyme-substrate co...The solubilization of elastin by Bacillus licheniformis elastase cannot be analyzed by conventional kinetic methods because the biologically relevant substrate is insoluble and the concentration of enzyme-substrate complex has no physical meaning. In this paper we report the optimization of elastolysis conditions and analysis of elastolytic kinetics. Our results indicated that the hydrolyzing temperature and time are very important factors affecting elastolysis rate. The optimized conditions using central composite design were as follows: elastolysis temperature 50 ℃, elastase concentration 1 × 10^4 U/ml, elastin 80 mg, elastolytic time 4 h. Investigation of the effects of substrate content, elastase concentration and pH was also revealed that low or high elastin content inhibits the elastolysis process. Increasingelastase improves elastin degradation, but high elastase may change the kinetics characterization. Alkaline environment can decrease elastin degradation rate and pH may affect elastolysis by changing elastase reaction pH. To further elucidate the elastolysis process, the logistic model was used to elastolysis kinetics study showing clearly that the logistic model can reasonably explain the elastolysis process, especially under lower elastase concentration. However, there is still need for more investigations with the aid of other methods, such as biochemical and molecular methods.展开更多
An analysis of the response of surface acoustic wave sensors coated with polymer film based on new coating deposition (self-assemble and molecularly imprinted technology) is described and the response formulas are h...An analysis of the response of surface acoustic wave sensors coated with polymer film based on new coating deposition (self-assemble and molecularly imprinted technology) is described and the response formulas are hence deduced. Using the real part of shear modulus, the polymer can be classified into three types: glassy film, glassy-rubbery film and rubbery film, Experimental results show that the attenuation response is in better consistence with the simulation than in Martin's theory, but the velocity response does not accord with the calculation exactly. Maybe it is influenced by the experimental methods and environment. In addition, simulations of gas sorption for polymer films are performed. As for glassy film, the SAW sensor response increases with increasing fihn thickness, and the relationship between the sensor response and the concentration of gas is pretty linear, while as for glassy-rubbery flint and rubbery film, the relationship between the sensor sensitivity anti concentration of gas is very complicated. The ultimately calculated results indicate that the relationship between the sensor response and frequency is not always linear due to the viscoelastic prooerties of the polymer.展开更多
The effects of blend composition and micro-phase structure on the mechanical behavior of A/B polymer blend film are studied by coupling the Monte Carlo(MC) simulation of morphology with the lattice spring model(LSM) o...The effects of blend composition and micro-phase structure on the mechanical behavior of A/B polymer blend film are studied by coupling the Monte Carlo(MC) simulation of morphology with the lattice spring model(LSM) of micro mechanics of materials.The MC method with bond length fluctuation and cavity diffusion algorithm on cubic lattice is adopted to simulate the micro-phase structure of A/B polymer blend.The information of morphology and structure is then inputted to the LSM composed of a three-dimensional network of springs to obtain the mechanical properties of polymer blend film.Simulated results show that the mechanical response is mainly affected by the density and the composition of polymer blend film through the morphology transition.When a force is applied on the outer boundary of polymer blend film,the vicinity of the inner cavities experiences higher stresses and strains responsible for the onset of crack propagation and the premature failure of the entire system.展开更多
In random vibration analysis, the importance of spectral moments of the response stems from their relevance to system performance prediction. Usually,spectral moments are obtained by the frequency domain method. In pr...In random vibration analysis, the importance of spectral moments of the response stems from their relevance to system performance prediction. Usually,spectral moments are obtained by the frequency domain method. In present paper, the random response spectral moments of elastic-viscoelastic combined systems are calculated by complex modal analysis in the time domain. The analytical form results are obtained for random response spectral moments of an elastic-viscoelastic combined system to a stationary white noise excitation. The method presented is simple and easy to apply. It is hoped that this study would pave a way for the analysis of reliability of elastic-viscoelastic combined systems subjected to random excitations.展开更多
The deformed microstructure evolution of depleted uranium impacted by steel projectile at a velocity of50m/s was investigated by means of confocal laser scanning microscope,electron backscatter diffraction,transmissio...The deformed microstructure evolution of depleted uranium impacted by steel projectile at a velocity of50m/s was investigated by means of confocal laser scanning microscope,electron backscatter diffraction,transmission electron microscope and indenter technique.The experimental results showed that the spherical cap crater was formed in depleted uranium target impacted by steel projectile,and the diameter and depth of the impacted crater were5.45and1.01mm,respectively.From crater rim to deep matrix,four deformed zones were classified,including twin fragmentation zone,high density deformation twin zone,low density deformation twin zone and matrix zone.Twinning was considered as the dominant plastic deformation mechanism of depleted uranium subjected to impact loadings.Besides twinning,the dislocation slipping also played an important role to accommodate the plastic deformation.Finally,the deformed microstructure evolution of depleted uranium under high velocity impact was proposed.展开更多
7039 Al alloy plates which were used as armor materials were produced by powder metallurgy method. The prepared mixed powders were pressed and plated by extrusion process. These plates, after being subjected to T6 hea...7039 Al alloy plates which were used as armor materials were produced by powder metallurgy method. The prepared mixed powders were pressed and plated by extrusion process. These plates, after being subjected to T6 heat treatment, were joined double-sided by friction stir welding method. Microstructure and microhardness of the welded plate were investigated. It was determined that the finest grain structure and the lowest hardness value occurred in the stir zone as 2-6 mm and HV 80.9, respectively. In order to determine the ballistic properties of welded plates, 7.62 mm armor piercing projectiles were shot to the base metal(BM), heat affected zone(HAZ), and thermomechanically affected zone+stir zone(TMAZ+SZ). Ballistic limits(v_(50)) of these zones were determined. The ballistic limits of the BM, TMAZ+SZ, and HAZ of the plate were approximately 14.7%, 15.3%, and 17.9% lower than that of the standard plate at the same thickness, respectively. It was determined that the armor piercing projectiles created petaling and ductile hole enlargement failure types at the armor plate. Ballistic and mechanical results can be enhanced by hot-cold rolling mills after extrusion and particle reinforcement.展开更多
Objective The present study aimed to determine the accuracy of real-time tissue elastography (RTE) for the diagnosis of breast cancer. Methods The search was conducted in the PubMed, Web of Science, Cochrane Librar...Objective The present study aimed to determine the accuracy of real-time tissue elastography (RTE) for the diagnosis of breast cancer. Methods The search was conducted in the PubMed, Web of Science, Cochrane Library, and China Biology Medicine databases from inception through December 31, 2014, without language restrictions. The meta-analysis was conducted using STATA version 12.0 and Meta-Disc version 1.4. We calculated the summary statistics for sensitivity (Sen), specificity (Spe), positive and negative likelihood ratio (LR+/LR–), diagnostic odds ratio (DOR), and summary receiver operating characteristic (SROC) curve. Results Ten studies that met al inclusion criteria were included in the meta-analysis. A total of 608 ma-lignant breast lesions and 1292 benign breast tumors were assessed. Al breast lesions were histological y confirmed after RTE. The pooled Sen was 0.83 (95% CI = 0.79–0.86); the pooled Spe was 0.86 (95% CI = 0.84–0.88). The pooled LR+ was 9.87 (95% CI = 2.66–36.71); the pooled LR– was 0.20 (95% CI = 0.17–0.23). The pooled DOR of RTE for the diagnosis of breast cancer was 62.21 (95% CI = 33.88–114.24). The area under the SROC curve was 0.9334 (standard error = 0.00125). We found no evidence of publica-tion bias (t = –0.57, P = 0.582). Conclusion RTE may have high diagnostic accuracy for the dif erential diagnosis of benign and malig-nant breast tumors. RTE may be a good tool for breast cancer diagnosis.展开更多
The Moroccan Spring in 2011 has been a golden opportunity for Moroccan women to put their country on the democratization track. Their decision to take an integral part in all aspects of the uprisings stems from their ...The Moroccan Spring in 2011 has been a golden opportunity for Moroccan women to put their country on the democratization track. Their decision to take an integral part in all aspects of the uprisings stems from their belief that their participation and contribution are necessary for any potential democratic changes that would undoubtedly secure and bring them more rights. However, the appointment of only one female minister in the first Islamist-led government and the reluctance to implement the provisions of the new constitution, namely the issue of gender parity, are but two of the new alarming examples that have disappointed Moroccan women. Based on interviews with women's movement organizations' leaders and 20 February Movement (20-FMVT) female activists and through following the development of the Arab Spring in Morocco in particular and in the Middle Eastern & Northern Africa region in general, this paper considers the different roles, specificity, and gains of Moroccan women during and after the so-called Moroccan Spring. The paper argues that despite their limited gains in the aftermath of this momentum, Moroccan women managed once again to prove their agency and ability to change laws and instigate reforms.展开更多
The conventional dynamic control devices,such as fluid viscous damper(VFD)and isolating bearings,are unsuitable for the double-deck cable-stayed bridge due to a lack of sustainability,so it is necessary to introduce s...The conventional dynamic control devices,such as fluid viscous damper(VFD)and isolating bearings,are unsuitable for the double-deck cable-stayed bridge due to a lack of sustainability,so it is necessary to introduce some high-tech dynamic control devices to reduce dynamic response for double-deck cable-stayed bridges under earthquakes.A(90+128)m-span double-deck cable-stayed bridge with a steel truss beam is taken as the prototype bridge.A 3D finite element model is built to conduct the nonlinear time-history analysis of different site categories in fortification intensityⅨ(0.40 g)degree area.Two new types of dynamic control devices-cable sliding friction aseismic bearings(CSFABs)and elasticity fluid viscous dampers composite devices(EVFDs)are introduced to reduce the dynamic responses of double-deck cable-stayed bridges with steel truss beam.The parametric optimization design for the damping coefficient C and the elastic stiffness of spring K of EVFDs is conducted.The following conclusions are drawn:(1)The hybrid support system by EVFDs and CSFABs play a good function under both seismic and regular work,especially in eliminating the expansion joints damage;(2)The hybrid support system can reduce the beam-end displacement by 75%and the tower-bottom bending moment by 60%under the longitudinal seismic excitation.In addition,it can reduce the pier-bottom bending moment by at least 45%under transverse seismic and control the relative displacement between the pier and beam within 0.3 m.(3)Assuming the velocity indexα=0.3,the parametric optimization suggests the damping coefficient C as 2000 kN·s·m-1in siteⅠ0,4000kN·s·m-1in siteⅡ,6000 kN·s·m-1in siteⅣ,and the elastic stiffness of spring K as 10000 kN/m in siteⅠ0,50000 kN/m in siteⅡ,and 100000 kN/m in siteⅣ.展开更多
To improve the accuracy and interactivity of soft tissue delormatlon simulation, a new plate spring model based on physics is proposed. The model is parameterized and thus can be adapted to simulate different organs. ...To improve the accuracy and interactivity of soft tissue delormatlon simulation, a new plate spring model based on physics is proposed. The model is parameterized and thus can be adapted to simulate different organs. Different soft tissues are modeled by changing the width, number of pieces, thickness, and length of a single plate spring. In this paper, the structural design, calcula- tion of soft tissue deformation and real-time feedback operations of our system are also introduced. To evaluate the feasibility of the system and validate the model, an experimental system of haptic in- teraction, in which users can use virtual hands to pull virtual brain tissues, is built using PHANTOM OMNI devices. Experimental results show that the proposed system is stable, accurate and promising for modeling instantaneous soft tissue deformation.展开更多
基金Project(BE2011778)supported by Science and Technology Support Program of Jiangsu Province,ChinaProject(CE20115036)supported by Science and Technology Support Program of Changzhou City,China
文摘The influence of Zr content on the microstructure and mechanical properties of implant Ti-35Nb-4Sn-6Mo-xZr (x=0, 3, 6, 9, 12, 15; mass fraction) alloys was investigated. It is shown that Ti-35Nb-4Sn-6Mo-xZr alloys appear to have equiaxed single β microstructure after solution treatment at 1023 K. It is found that the grains are refined first and then coarsened with the increase of Zr content. It is also found that Zr element added to titanium alloys has both the solution strengthening and fine-grain strengthening effect, and affects the lattice parameters. With increasing the Zr content of the alloys, the strength increases, the elongation decreases, whereas the elastic modulus firstly increases and then decreases. The mechanical properties of Ti-35Nb-4Sn-6Mo-9Zr alloy are as follows: σb=785 MPa, δ=11%, E=68 GPa, which is more suitable for acting as human implant materials compared to the traditional implant Ti-6Al-4V alloy.
基金Project(2012CB619501)supported by the National Basic Research Program of China
文摘The effects of T916 thermo-mechanical process on microstructures, mechanical properties and ballistic resistance of 2519A aluminum alloy were investigated by optical microscopy (OM), transmission electron microscopy (TEM), tensile tests and ballistic resistance test. After T916 treatment, the yield strength, tensile strength and elongation rate of 2519A aluminum alloy reach 501 MPa, 540 MPa and 14%, respectively. And the ballistic limit velocity of 2519A-T916 alloy (30 mm in thickness) is 715 rn/s. The microstructure varies near the sidewalls of crater. The interrupted ageing contributes to these excellent properties of the alloy. During T916 process, the precipitation of Guinier Preston (GP) zone is finer and denser during the interrupted ageing, thus resulting in well precipitated strengthening phase.
文摘Objective Spontaneous rupture of hepatocellular carcinoma (HCC) is common in Asia and Africa with unclear mechanism. In our previous study, we found that the deposition of immune complex on vascular wall and vascular injury were related to the HCC rupture. In this study, the structure of elastin around the small artery was deeply investigated to confirm our previous study. Methods Immunohistochemical technique and transmission electron microscopy were used to study 23 specimens from ruptured HCC and 30 cases of nonruptured HCC. Results The layer of elastin around the vascular wall was significant thicker in patients with ruptured HCC than that in nonruptured HCC. The proliferation of elastin, abnormal distribution of neutrophil elastase and degradation of collagen fibril were predominantly present in the specimens from ruptured HCC. The phenomenon of electron—dense deposit in the elastic lamina that represented the deposition of immune complex, and the signs of infiltrated neutrophils from bloodstream into the vascular wall that caused the vascular injury, also can be found in ruptured HCC. Since the damaged vessels could become stiff and weak, which would more prone to be splitting and results in hemorrhage and the rupture of HCC, we postulated that the preexisting of immune complex deposition and vascular injury may be relate to the ruptured HCC. Conclusion The vascular injury caused by immune complex deposition might relate to ruptured HCC. Key words hepatocellular carcinoma - rupture - elastin - elastase
基金supported by the Chinese Academy of Sciences Strategic Leading Science and Technology projects(Grant No.XDB10010400)the China Postdoctoral Science Foundation(Grant No.2015M570142)
文摘The dependence of elastic moduli of shales on the mineralogy and microstructure of shales is important for the prediction of sweet spots and shale gas production. Based on 3D digital images of the microstructure of Longmaxi black shale samples using X-ray CT, we built detailed 3D digital images of cores with porosity properties and mineral contents. Next, we used finite-element (FE) methods to derive the elastic properties of the samples. The FE method can accurately model the shale mineralogy. Particular attention is paid to the derived elastic properties and their dependence on porosity and kerogen. The elastic moduli generally decrease with increasing porosity and kerogen, and there is a critical porosity (0.75) and kerogen content (ca. ≤3%) over which the elastic moduli decrease rapidly and slowly, respectively. The derived elastic moduli of gas- and oil-saturated digital cores differ little probably because of the low porosity (4.5%) of the Longmaxi black shale. Clearly, the numerical experiments demonstrated the feasibility of combining microstructure images of shale samples with elastic moduli calculations to predict shale properties.
基金Project (No. Y304203) supported by the Natural Science Foundationof Zhejiang Province, China
文摘The solubilization of elastin by Bacillus licheniformis elastase cannot be analyzed by conventional kinetic methods because the biologically relevant substrate is insoluble and the concentration of enzyme-substrate complex has no physical meaning. In this paper we report the optimization of elastolysis conditions and analysis of elastolytic kinetics. Our results indicated that the hydrolyzing temperature and time are very important factors affecting elastolysis rate. The optimized conditions using central composite design were as follows: elastolysis temperature 50 ℃, elastase concentration 1 × 10^4 U/ml, elastin 80 mg, elastolytic time 4 h. Investigation of the effects of substrate content, elastase concentration and pH was also revealed that low or high elastin content inhibits the elastolysis process. Increasingelastase improves elastin degradation, but high elastase may change the kinetics characterization. Alkaline environment can decrease elastin degradation rate and pH may affect elastolysis by changing elastase reaction pH. To further elucidate the elastolysis process, the logistic model was used to elastolysis kinetics study showing clearly that the logistic model can reasonably explain the elastolysis process, especially under lower elastase concentration. However, there is still need for more investigations with the aid of other methods, such as biochemical and molecular methods.
基金This work was supported by National Natural Science Foundation (No. 10374100).
文摘An analysis of the response of surface acoustic wave sensors coated with polymer film based on new coating deposition (self-assemble and molecularly imprinted technology) is described and the response formulas are hence deduced. Using the real part of shear modulus, the polymer can be classified into three types: glassy film, glassy-rubbery film and rubbery film, Experimental results show that the attenuation response is in better consistence with the simulation than in Martin's theory, but the velocity response does not accord with the calculation exactly. Maybe it is influenced by the experimental methods and environment. In addition, simulations of gas sorption for polymer films are performed. As for glassy film, the SAW sensor response increases with increasing fihn thickness, and the relationship between the sensor response and the concentration of gas is pretty linear, while as for glassy-rubbery flint and rubbery film, the relationship between the sensor sensitivity anti concentration of gas is very complicated. The ultimately calculated results indicate that the relationship between the sensor response and frequency is not always linear due to the viscoelastic prooerties of the polymer.
基金Supported by the National Natural Science Foundation of China (20976044 20736002)
文摘The effects of blend composition and micro-phase structure on the mechanical behavior of A/B polymer blend film are studied by coupling the Monte Carlo(MC) simulation of morphology with the lattice spring model(LSM) of micro mechanics of materials.The MC method with bond length fluctuation and cavity diffusion algorithm on cubic lattice is adopted to simulate the micro-phase structure of A/B polymer blend.The information of morphology and structure is then inputted to the LSM composed of a three-dimensional network of springs to obtain the mechanical properties of polymer blend film.Simulated results show that the mechanical response is mainly affected by the density and the composition of polymer blend film through the morphology transition.When a force is applied on the outer boundary of polymer blend film,the vicinity of the inner cavities experiences higher stresses and strains responsible for the onset of crack propagation and the premature failure of the entire system.
文摘In random vibration analysis, the importance of spectral moments of the response stems from their relevance to system performance prediction. Usually,spectral moments are obtained by the frequency domain method. In present paper, the random response spectral moments of elastic-viscoelastic combined systems are calculated by complex modal analysis in the time domain. The analytical form results are obtained for random response spectral moments of an elastic-viscoelastic combined system to a stationary white noise excitation. The method presented is simple and easy to apply. It is hoped that this study would pave a way for the analysis of reliability of elastic-viscoelastic combined systems subjected to random excitations.
基金Project(2014B0301046)supported by the Science Development Fund of China Academy of Engineering PhysicsProject(51401187)supported by the National Natural Science Foundation of China
文摘The deformed microstructure evolution of depleted uranium impacted by steel projectile at a velocity of50m/s was investigated by means of confocal laser scanning microscope,electron backscatter diffraction,transmission electron microscope and indenter technique.The experimental results showed that the spherical cap crater was formed in depleted uranium target impacted by steel projectile,and the diameter and depth of the impacted crater were5.45and1.01mm,respectively.From crater rim to deep matrix,four deformed zones were classified,including twin fragmentation zone,high density deformation twin zone,low density deformation twin zone and matrix zone.Twinning was considered as the dominant plastic deformation mechanism of depleted uranium subjected to impact loadings.Besides twinning,the dislocation slipping also played an important role to accommodate the plastic deformation.Finally,the deformed microstructure evolution of depleted uranium under high velocity impact was proposed.
文摘7039 Al alloy plates which were used as armor materials were produced by powder metallurgy method. The prepared mixed powders were pressed and plated by extrusion process. These plates, after being subjected to T6 heat treatment, were joined double-sided by friction stir welding method. Microstructure and microhardness of the welded plate were investigated. It was determined that the finest grain structure and the lowest hardness value occurred in the stir zone as 2-6 mm and HV 80.9, respectively. In order to determine the ballistic properties of welded plates, 7.62 mm armor piercing projectiles were shot to the base metal(BM), heat affected zone(HAZ), and thermomechanically affected zone+stir zone(TMAZ+SZ). Ballistic limits(v_(50)) of these zones were determined. The ballistic limits of the BM, TMAZ+SZ, and HAZ of the plate were approximately 14.7%, 15.3%, and 17.9% lower than that of the standard plate at the same thickness, respectively. It was determined that the armor piercing projectiles created petaling and ductile hole enlargement failure types at the armor plate. Ballistic and mechanical results can be enhanced by hot-cold rolling mills after extrusion and particle reinforcement.
文摘Objective The present study aimed to determine the accuracy of real-time tissue elastography (RTE) for the diagnosis of breast cancer. Methods The search was conducted in the PubMed, Web of Science, Cochrane Library, and China Biology Medicine databases from inception through December 31, 2014, without language restrictions. The meta-analysis was conducted using STATA version 12.0 and Meta-Disc version 1.4. We calculated the summary statistics for sensitivity (Sen), specificity (Spe), positive and negative likelihood ratio (LR+/LR–), diagnostic odds ratio (DOR), and summary receiver operating characteristic (SROC) curve. Results Ten studies that met al inclusion criteria were included in the meta-analysis. A total of 608 ma-lignant breast lesions and 1292 benign breast tumors were assessed. Al breast lesions were histological y confirmed after RTE. The pooled Sen was 0.83 (95% CI = 0.79–0.86); the pooled Spe was 0.86 (95% CI = 0.84–0.88). The pooled LR+ was 9.87 (95% CI = 2.66–36.71); the pooled LR– was 0.20 (95% CI = 0.17–0.23). The pooled DOR of RTE for the diagnosis of breast cancer was 62.21 (95% CI = 33.88–114.24). The area under the SROC curve was 0.9334 (standard error = 0.00125). We found no evidence of publica-tion bias (t = –0.57, P = 0.582). Conclusion RTE may have high diagnostic accuracy for the dif erential diagnosis of benign and malig-nant breast tumors. RTE may be a good tool for breast cancer diagnosis.
文摘The Moroccan Spring in 2011 has been a golden opportunity for Moroccan women to put their country on the democratization track. Their decision to take an integral part in all aspects of the uprisings stems from their belief that their participation and contribution are necessary for any potential democratic changes that would undoubtedly secure and bring them more rights. However, the appointment of only one female minister in the first Islamist-led government and the reluctance to implement the provisions of the new constitution, namely the issue of gender parity, are but two of the new alarming examples that have disappointed Moroccan women. Based on interviews with women's movement organizations' leaders and 20 February Movement (20-FMVT) female activists and through following the development of the Arab Spring in Morocco in particular and in the Middle Eastern & Northern Africa region in general, this paper considers the different roles, specificity, and gains of Moroccan women during and after the so-called Moroccan Spring. The paper argues that despite their limited gains in the aftermath of this momentum, Moroccan women managed once again to prove their agency and ability to change laws and instigate reforms.
文摘The conventional dynamic control devices,such as fluid viscous damper(VFD)and isolating bearings,are unsuitable for the double-deck cable-stayed bridge due to a lack of sustainability,so it is necessary to introduce some high-tech dynamic control devices to reduce dynamic response for double-deck cable-stayed bridges under earthquakes.A(90+128)m-span double-deck cable-stayed bridge with a steel truss beam is taken as the prototype bridge.A 3D finite element model is built to conduct the nonlinear time-history analysis of different site categories in fortification intensityⅨ(0.40 g)degree area.Two new types of dynamic control devices-cable sliding friction aseismic bearings(CSFABs)and elasticity fluid viscous dampers composite devices(EVFDs)are introduced to reduce the dynamic responses of double-deck cable-stayed bridges with steel truss beam.The parametric optimization design for the damping coefficient C and the elastic stiffness of spring K of EVFDs is conducted.The following conclusions are drawn:(1)The hybrid support system by EVFDs and CSFABs play a good function under both seismic and regular work,especially in eliminating the expansion joints damage;(2)The hybrid support system can reduce the beam-end displacement by 75%and the tower-bottom bending moment by 60%under the longitudinal seismic excitation.In addition,it can reduce the pier-bottom bending moment by at least 45%under transverse seismic and control the relative displacement between the pier and beam within 0.3 m.(3)Assuming the velocity indexα=0.3,the parametric optimization suggests the damping coefficient C as 2000 kN·s·m-1in siteⅠ0,4000kN·s·m-1in siteⅡ,6000 kN·s·m-1in siteⅣ,and the elastic stiffness of spring K as 10000 kN/m in siteⅠ0,50000 kN/m in siteⅡ,and 100000 kN/m in siteⅣ.
基金Supported by the National High Technology Research and Development Programme of China(No.2013AA010803,2009AA01Z311,2009AA01Z314)the National Natural Science Foundation of China(No.61304205,61203316,61272379,61103086,41301037)+3 种基金the Natural Science Foundation of Jiangsu Province(BK20141002)the Open Funding Project of State Key Laboratory of Virtual Reality Technology and Systems,Beihang University,Jiangsu Ordinary University Science Research Project(No.13KJB120007)Innovation and Entrepreneurship Training Project of College Students(No.201410300153,201410300165)the Excellent Undergraduate Paper(design)Supporting Project of NUIST
文摘To improve the accuracy and interactivity of soft tissue delormatlon simulation, a new plate spring model based on physics is proposed. The model is parameterized and thus can be adapted to simulate different organs. Different soft tissues are modeled by changing the width, number of pieces, thickness, and length of a single plate spring. In this paper, the structural design, calcula- tion of soft tissue deformation and real-time feedback operations of our system are also introduced. To evaluate the feasibility of the system and validate the model, an experimental system of haptic in- teraction, in which users can use virtual hands to pull virtual brain tissues, is built using PHANTOM OMNI devices. Experimental results show that the proposed system is stable, accurate and promising for modeling instantaneous soft tissue deformation.