This paper puts forward the concept of double semi-active vibration isolation systemutilizing the 'on-off' active damper and the 'on-off' active spring. Applying KBM Asympto-tic method, the vibration ...This paper puts forward the concept of double semi-active vibration isolation systemutilizing the 'on-off' active damper and the 'on-off' active spring. Applying KBM Asympto-tic method, the vibration of the system in case of weak semi-active control is studied. ln pcactice, there are two types of vibration isolation. One is to isolate the transmitting of the cyclicunbalanced force generated by the revolving machine to the surroundings. The other is to isolatethe transmitting of the vibration displacement of the surroundings to precise equipment. Deduc-ing the influence of the roadway unflatness on vehicles also belongs to this type. For the firsttype of isolation system, the damper always dissipates energy, and the total work done by the spring in a vibration cycle is zero. For the second type of isolation system, the work done by the damper sometimes is positive, and sometimes negative. The damper dissipates less energy. The work done by the spring in a vibration cycle isn't zero, and it is usually positive. ln thispaper, the vibration isolation is refered to the second type. .展开更多
This article examines the interaction of multiple cracks in an infinite plate by using a numerical method. The numerical method consists of the non-singular displacement discontinuity element presented by Crouch and S...This article examines the interaction of multiple cracks in an infinite plate by using a numerical method. The numerical method consists of the non-singular displacement discontinuity element presented by Crouch and Startled and the crack tip displacement discontinuity elements proposed by the author. In the numerical method implementation, the left or the right crack tip element is placed locally at the corresponding left or right crack tip on top of the constant displacement discontinuity elements that cover the entire crack surface and the other boundaries. The numerical method is called a hybrid displacement discontinuity method. The following test examples of crack problems in an infinite plate under tension are included: “ center-inclined cracked plate”, “interaction of two collinear cracks with equal length”, “interaction of three collinear cracks with equal length”, “interaction of two parallel cracks with equal length”, and “interaction of one horizontal crack and one inclined crack”. The present numerical results show that the numerical method is simple yet very accurate for analyzing the interaction of multiple cracks in an infinite plate.展开更多
Bulletproof steel plates are widely used for the safety of special vehicles.This paper mainly researches on the shoot resistance of heat treated light weight B-grade bulletproof steel plates through numerical analysis...Bulletproof steel plates are widely used for the safety of special vehicles.This paper mainly researches on the shoot resistance of heat treated light weight B-grade bulletproof steel plates through numerical analysis.Based on the flow behavior of bulletproof steel plates and bullet at various high strain rates,finite element(FE) model has been set up using ANSYS/LS-DYNA software.The simulation results are compared with the shooting results,which show a good consistency and a high reliability.Therefore,the simulation results are efficient approaches and strategies to decide and select the mechanical property and thickness of bulletproof steel plates,saving a lot of work and the cost of experiments.展开更多
With the development of high-speed and heavy-haul railway in China, problems like insufficient thickness of ballast bed and overlarge track stiffness are obvious. Ballast may break into small particles and their conta...With the development of high-speed and heavy-haul railway in China, problems like insufficient thickness of ballast bed and overlarge track stiffness are obvious. Ballast may break into small particles and their contact status will deteriorate under cyclic loading, resulting in ballast degradation. Discrete element method(DEM) was used to research improved performance of ballast bed using elastic sleeper. Clusters were generated by bonding spheres to model real ballasts, while broken bonds were utilized to distinguish breakage. Two kinds of ballast beds with elastic sleeper and conventional sleeper were established, respectively. After applying cyclic loading to the models, differences of mechanical properties between two models were analyzed by contrasting their dynamic behavior indexes, such as particle contact force, sleeper settlement, vibration velocity and acceleration, breakage characteristic. The results illustrate that compared with conventional sleeper, elastic sleeper increases sleeper settlement, while reduces ballast vibration and contact force between particles, which could depress ballast breakage.展开更多
To describe strategies for addressing technical aspects of computational modeling of leg tissue with the finite element (FE) method, a patient's leg sample was selected and scanned by CT at the direction parallel t...To describe strategies for addressing technical aspects of computational modeling of leg tissue with the finite element (FE) method, a patient's leg sample was selected and scanned by CT at the direction parallel to the Frankfort Horizontal plane. A three-dimensional (3D) finite element model of the human leg was developed using the actual geometry of the leg skeleton and soft tissues, which were obtained from 3D reconstruction of CT images. All joints were defined as contact surfaces, which allow relative articulating movement. The major ligaments were simulated using tension-only truss elements by connecting the corresponding attachment points on the bone surfaces. The bony and ligamentous structures were embedded in a volume of soft tissues. The muscles were defined as non-linear viscoelastic material, and the skin, ligaments and tendons were defined as hyperelastic, while the bony structures were assumed to be linearly elastic. The muhilayer FEM model containing thighbone, tibia, fibula, kneecap, soft tissue was formed after meshing. Diverse forces were imposed on the FEM model. The results show that the multilayer FEM model can represent tissue deformation more accurately.展开更多
文摘This paper puts forward the concept of double semi-active vibration isolation systemutilizing the 'on-off' active damper and the 'on-off' active spring. Applying KBM Asympto-tic method, the vibration of the system in case of weak semi-active control is studied. ln pcactice, there are two types of vibration isolation. One is to isolate the transmitting of the cyclicunbalanced force generated by the revolving machine to the surroundings. The other is to isolatethe transmitting of the vibration displacement of the surroundings to precise equipment. Deduc-ing the influence of the roadway unflatness on vehicles also belongs to this type. For the firsttype of isolation system, the damper always dissipates energy, and the total work done by the spring in a vibration cycle is zero. For the second type of isolation system, the work done by the damper sometimes is positive, and sometimes negative. The damper dissipates less energy. The work done by the spring in a vibration cycle isn't zero, and it is usually positive. ln thispaper, the vibration isolation is refered to the second type. .
文摘This article examines the interaction of multiple cracks in an infinite plate by using a numerical method. The numerical method consists of the non-singular displacement discontinuity element presented by Crouch and Startled and the crack tip displacement discontinuity elements proposed by the author. In the numerical method implementation, the left or the right crack tip element is placed locally at the corresponding left or right crack tip on top of the constant displacement discontinuity elements that cover the entire crack surface and the other boundaries. The numerical method is called a hybrid displacement discontinuity method. The following test examples of crack problems in an infinite plate under tension are included: “ center-inclined cracked plate”, “interaction of two collinear cracks with equal length”, “interaction of three collinear cracks with equal length”, “interaction of two parallel cracks with equal length”, and “interaction of one horizontal crack and one inclined crack”. The present numerical results show that the numerical method is simple yet very accurate for analyzing the interaction of multiple cracks in an infinite plate.
文摘Bulletproof steel plates are widely used for the safety of special vehicles.This paper mainly researches on the shoot resistance of heat treated light weight B-grade bulletproof steel plates through numerical analysis.Based on the flow behavior of bulletproof steel plates and bullet at various high strain rates,finite element(FE) model has been set up using ANSYS/LS-DYNA software.The simulation results are compared with the shooting results,which show a good consistency and a high reliability.Therefore,the simulation results are efficient approaches and strategies to decide and select the mechanical property and thickness of bulletproof steel plates,saving a lot of work and the cost of experiments.
基金Project(U1234211)supported by the National Natural Science Foundation of ChinaProject(2013G009-B)supported by China Railway Corporation
文摘With the development of high-speed and heavy-haul railway in China, problems like insufficient thickness of ballast bed and overlarge track stiffness are obvious. Ballast may break into small particles and their contact status will deteriorate under cyclic loading, resulting in ballast degradation. Discrete element method(DEM) was used to research improved performance of ballast bed using elastic sleeper. Clusters were generated by bonding spheres to model real ballasts, while broken bonds were utilized to distinguish breakage. Two kinds of ballast beds with elastic sleeper and conventional sleeper were established, respectively. After applying cyclic loading to the models, differences of mechanical properties between two models were analyzed by contrasting their dynamic behavior indexes, such as particle contact force, sleeper settlement, vibration velocity and acceleration, breakage characteristic. The results illustrate that compared with conventional sleeper, elastic sleeper increases sleeper settlement, while reduces ballast vibration and contact force between particles, which could depress ballast breakage.
基金Sponsored by the Natural Science Foundation of Heilongjiang Province of China(Grant No.200815)the Research Foundation for Talented Scholars ofHarbin (Grant No.2008RFQXS061)
文摘To describe strategies for addressing technical aspects of computational modeling of leg tissue with the finite element (FE) method, a patient's leg sample was selected and scanned by CT at the direction parallel to the Frankfort Horizontal plane. A three-dimensional (3D) finite element model of the human leg was developed using the actual geometry of the leg skeleton and soft tissues, which were obtained from 3D reconstruction of CT images. All joints were defined as contact surfaces, which allow relative articulating movement. The major ligaments were simulated using tension-only truss elements by connecting the corresponding attachment points on the bone surfaces. The bony and ligamentous structures were embedded in a volume of soft tissues. The muscles were defined as non-linear viscoelastic material, and the skin, ligaments and tendons were defined as hyperelastic, while the bony structures were assumed to be linearly elastic. The muhilayer FEM model containing thighbone, tibia, fibula, kneecap, soft tissue was formed after meshing. Diverse forces were imposed on the FEM model. The results show that the multilayer FEM model can represent tissue deformation more accurately.