Micro/nano-thin films are widely used in the fields of micro/nano-electromechanical system(MEMS/NEMS)and flexible electronics,and their mechanical properties have an important impact on the stability and reliability o...Micro/nano-thin films are widely used in the fields of micro/nano-electromechanical system(MEMS/NEMS)and flexible electronics,and their mechanical properties have an important impact on the stability and reliability of components.However,accurate characterization of the mechanical properties of thin films still faces challenges due to the complexity of film-substrate structure,and the characterization efficiency of traditional techniques is insufficient.In this paper,a high-throughput determination method of the elastic modulus of thin films is proposed based on the strain variance method,the feasibility of which is analyzed by the finite element method(FEM),and the specific tensile configuration with array-distributed thin films is designed and optimized.Based on the strain difference between the film-substrate region and the uncoated region,the elastic modulus of multiple films is obtained simultaneously,and the influences of film width,spacing,thickness,and distribution on the measurement of elastic modulus are elucidated.The results show that the change in film width has a more obvious effect on the elastic modulus determination than film spacing and thickness,i.e.,the larger the film width is,the closer the calculation results are to the theoretical value,and the change in calculation results tends to be stabilized when the film width increases to a certain length.Specifically,the simultaneous measurement of the elastic modulus of eight metal films on a polyimide(PI)substrate with a length of 110 mm and a width of 30 mm can be realized,and the testing throughput can be further increased with the extension of the substrate length.This study provides an efficient and low-cost method for measuring the elastic modulus of thin films,which is expected to accelerate the development of new thin film materials.展开更多
The effect of structure,elastic modulus and thickness of lower modulus layer in porous titanium implants on the stress distribution at the implant-bone interface was investigated.Three-dimensional finite element model...The effect of structure,elastic modulus and thickness of lower modulus layer in porous titanium implants on the stress distribution at the implant-bone interface was investigated.Three-dimensional finite element models of different titanium implants were constructed.The structures of the implants included the whole lower modulus style (No.1),bio-mimetic style (No.2),the whole lower modulus style in cancellous bone (No.3) and the whole dense style No.4.The stress distributions at bone-implant interface under static loading were analyzed using Ansys Workbench 10.0 software.The results indicated that the distribution of interface stress is strongly depended on the structure of the implants.The maximum stresses in cancellous bone and root region of implant No.2 are lower than those in the other three implants.A decrease in the modulus of the low modulus layer facilitates the interface stress transferring.Increasing the thickness of the low modulus layer can reduce the stress and induce a more uniform stress distribution at the interface.Among the four implants,biomimetic style implant No.2 is superior in transferring implant-bone interface stress to surrounding bones.展开更多
Terminal ballistic tests using 7.62 mm armor-piercing incendiary (API) projectiles were performed to evaluate the resistance to penetration of Ti-5Al-5Mo-5V-3Cr-IZr (Ti-55531) alloy. The dynamic properties were de...Terminal ballistic tests using 7.62 mm armor-piercing incendiary (API) projectiles were performed to evaluate the resistance to penetration of Ti-5Al-5Mo-5V-3Cr-IZr (Ti-55531) alloy. The dynamic properties were determined by a split Hopkinson pressure bar (SHPB) test system. Ti-55531 plates were subjected to two kinds of heat treatments, leading to the formation of high-strength and high-toughness plates. The results of SHPB test exhibit that the maximum impact absorbed energy of the high-strength plate at a strain rate of 2200 s^-1 is 270 MJ/m^3; however, the maximum value for the high-toughness plate at a strain rate of 4900 s^-1 is 710 MJ/m^3. The ballistic limit velocities for the high-strength and high-toughness plates with dimensions of 300 mm×300 mm×8 mm are 330 and 390 m/s, respectively. Excellent dynamic properties of Ti-55531 alloy correspond to good resistance to penetration. The microstructure evolution related to various impact velocities are observed to investigate the failure mechanism.展开更多
In the incremental sheet forming (ISF) process, springback is a very important factor that affects the quality of parts. Predicting and controlling springback accurately is essential for the design of the toolpath f...In the incremental sheet forming (ISF) process, springback is a very important factor that affects the quality of parts. Predicting and controlling springback accurately is essential for the design of the toolpath for ISF. A three-dimensional elasto-plastic finite element model (FEM) was developed to simulate the process and the simulated results were compared with those from the experiment. The springback angle was found to be in accordance with the experimental result, proving the FEM to be effective. A coupled artificial neural networks (ANN) and finite element method technique was developed to simulate and predict springback responses to changes in the processing parameters. A particle swarm optimization (PSO) algorithm was used to optimize the weights and thresholds of the neural network model. The neural network was trained using available FEM simulation data. The results showed that a more accurate prediction of s!oringback can be acquired using the FEM-PSONN model.展开更多
The penetration resistance of Kevlar-129 fiber reinforced composite materials was investigated with AUTODYN software.The ballistic limits of the fragment that pierced 6kinds of target plates were obtained by finite el...The penetration resistance of Kevlar-129 fiber reinforced composite materials was investigated with AUTODYN software.The ballistic limits of the fragment that pierced 6kinds of target plates were obtained by finite element simulation when the 10 g fragment simulation projectile(FSP)impacting to the target plates of different thickness values of 8,10,12,14,16 and 18mm with appropriate velocity,respectively,and the influences of thickness on the ballistic limits and the specific energy absorption were analyzed.The results show that the ballistic limit of Kevlar-129 fiber reinforced composite plates presents linear growth with the increase of the target thickness in the range from 8to 18 mm.The specific energy absorption of plates presents approximately linear growth,but there is slightly slow growth in the range from 10 to 16mm of the target thickness.It also can be found that the influences of plate thickness and surface density on the varying pattern of specific energy absorption are almost the same.Therefore,both of them can be used to characterize the variation of specific energy absorption under the impact of the FSP fragment.展开更多
In order to study the laws of the extrusion pressure changing with the extrusion parameters in the process of hydrostatic extrusion for the tungsten alloys, the large deformation elasto plastic theory and the sof...In order to study the laws of the extrusion pressure changing with the extrusion parameters in the process of hydrostatic extrusion for the tungsten alloys, the large deformation elasto plastic theory and the software of ANSYS 5 5 are used to carry out the numerical simulation research. The laws of the extrusion pressure changing with the extrusion parameters, such as the die angle, extrusion ratio, and friction coefficient, are obtained. The simulation results are in good agreement with the experimental ones, and the simulated results are believable.展开更多
During seismic wave propagation on a free surface, a strong material contrast boundary develops in response to interference by P- and S- waves to create a surface-wave phenomenon. To accurately determine the effects o...During seismic wave propagation on a free surface, a strong material contrast boundary develops in response to interference by P- and S- waves to create a surface-wave phenomenon. To accurately determine the effects of this interface on surface-wave propagation, the boundary conditions must be accurately modeled. In this paper, we present a numerical approach based on the dynamic poroelasticity for a space–time-domain staggered-grid finite-difference simulation in porous media that contain a free-surface boundary. We propose a generalized stess mirror formulation of the free-surface boundary for solids and fluids in porous media for the grid mesh on which lays the free-surface plane. Its analog is that used for elastic media, which is suitable for precise and stable Rayleigh-type surface-wave modeling. The results of our analysis of first kind of Rayleigh (R1) waves obtained by this model demonstrate that the discretization of the mesh in a similar way to that for elastic media can realize stable numerical solutions with acceptable precision. We present numerical examples demonstrating the efficiency and accuracy of our proposed method.展开更多
In order to investigate the mechanical response of reflective cracking in asphalt concrete pavement under dynamic vehicle loading, a finite element model is established in ABAQUS. The viscoelastic behavior is describe...In order to investigate the mechanical response of reflective cracking in asphalt concrete pavement under dynamic vehicle loading, a finite element model is established in ABAQUS. The viscoelastic behavior is described by a prony series which is calculated through nonlinear fitting to the creep test data obtained in the laboratory. Based on the viscoelastic theory, the time-temperature equivalence principle, fracture mechanics and the dynamic finite element method, both the Jintegral and the mix-mode stress intensity factor are utilized as fracture evaluation parameters, and a half-sine dynamic loading is used to simulate the vehicle loading. Finally, the mechanical response of the pavement reflective cracking is analyzed under different vehicle speeds, different environmental conditions and various damping factors. The results indicate that increasing either the vehicle speed or the structure damping factor decreases the maximum values of fracture parameters, while the structure temperature has little effect on the fracture parameters. Due to the fact that the vehicle speed can be enhanced by improving the road traffic conditions, and the pavement damping factor can become greater by modifying the components of materials, the development of reflective cracking can be delayed and the asphalt pavement service life can be effectively extended through both of these ways.展开更多
It is a very important and complex task to estimate the thermo-elasticproperties of a textile structural composite. In this paper, the finite element method (FEM) wasused for the prediction of the orthotropic thermo-e...It is a very important and complex task to estimate the thermo-elasticproperties of a textile structural composite. In this paper, the finite element method (FEM) wasused for the prediction of the orthotropic thermo-elastic properties of a composite reinforced byglass fiber knitted fabric. In order to define the final 3-D configuration of the loop reinforcingstructure, the interactions between the adjacent loops, the large displacement and the contactelements without friction were considered. The values predicted were compared with the experimentalresults.展开更多
The perfectly matched layer (PML) is a highly efficient absorbing boundary condition used for the numerical modeling of seismic wave equation. The article focuses on the application of this technique to finite-eleme...The perfectly matched layer (PML) is a highly efficient absorbing boundary condition used for the numerical modeling of seismic wave equation. The article focuses on the application of this technique to finite-element time-domain numerical modeling of elastic wave equation. However, the finite-element time-domain scheme is based on the second- order wave equation in displacement formulation. Thus, the first-order PML in velocity-stress formulation cannot be directly applied to this scheme. In this article, we derive the finite- element matrix equations of second-order PML in displacement formulation, and accomplish the implementation of PML in finite-element time-domain modeling of elastic wave equation. The PML has an approximate zero reflection coefficients for bulk and surface waves in the finite-element modeling of P-SV and SH wave propagation in the 2D homogeneous elastic media. The numerical experiments using a two-layer model with irregular topography validate the efficiency of PML in the modeling of seismic wave propagation in geological models with complex structures and heterogeneous media.展开更多
In this paper,the springback of TC4 titanium alloy under hot stamping condition was studied by means of experiment and numerical analysis.Firstly,an analytical model was established to predict the V-shaped springback ...In this paper,the springback of TC4 titanium alloy under hot stamping condition was studied by means of experiment and numerical analysis.Firstly,an analytical model was established to predict the V-shaped springback angleΔαunder the stretch-bending conditions.The model took into account of blank holder force,friction,property of the material,thickness of the sheet and the neutral layer shift.Then,the influence of several process parameters on springback was studied by experiment and finite element simulation using a V-shaped stamping tool.In the hot stamping tests,the titanium alloy sheet fractured seriously at room temperature.The titanium alloy has good formability when the initial temperature of the sheet is 750–900°C.However,the springback angle of formed parts is large and decreases with increasing temperature.The springback angleΔαdecreased by 50%from 0.5°to 0.25°,and the angleΔβdecreased by 46.7%from 1.5°to 0.8°when the initial temperature of sheet increased from 750°C to 900°C.The springback angle of titanium alloy sheet increases gradually with the increase of the punch radius,because of the increase of elastic recovery,the complex distribution of stress,the length of forming region and the decreasing degree of stress.Compared with the simulation results,the analytical model can better predict the springback angleΔα.展开更多
Finite dement formulations are used to simulate the evolution of the elastoplastic response of functionally graded cemented carbides (FGCC) due to thermal loading. The geometry of specimens is an axisymmetric solid ...Finite dement formulations are used to simulate the evolution of the elastoplastic response of functionally graded cemented carbides (FGCC) due to thermal loading. The geometry of specimens is an axisymmetric solid cylinder with a two-dimensional gradient. The elastoplastic constitutive relationship is developed by constraint factors. Numerical results show that compressive stresses occur in the surface zone and tensile stresses in the cobalt rich zone when the temperature drops from the initial stress-free temperature of 800 to 0℃. The maximum value of the surface compressive stress is 254 MPa and the maximum value of the tensile stress is 252 MPa in the cobalt rich zones. When the cobalt concentration difference in the specimens is equal to or greater than 0.3, there is pronounced plastic flow in cobalt rich zone. When the temperature heats up from 0 to 800 ℃, the total plastic strain reaches 0.001 4. Plastic flow has a significant effect on the reduction of thermal stress concentration.展开更多
Springback is caused by the redistribution of stress in sheet material after the tooling is removed. Precise prediction of sheet springback is very important in die design. Based on Hill’s yielding criterion and plan...Springback is caused by the redistribution of stress in sheet material after the tooling is removed. Precise prediction of sheet springback is very important in die design. Based on Hill’s yielding criterion and plane strain condition, an analytical model is proposed in this paper which takes into account the effects of contact pressure, the length of bending arm between the punch and die, transverse stress, neutral surface shifting and sheet thickness thinning on the sheet springback of V-bending. The predicted results by this analytical model indicated that the contact pressure and transverse stress have much effect on the springback when the bending ratio (the ratio of punch radius to sheet thickness) is less than five. The contact pressure declined when the length of bending arm goes up, which means that shorter length of bending arm will result in larger springback. The effect of neutral surface shifting on the springback is less than that of contact pressure and decreases with the bending ratio. However, this research showed that the influence of thickness thinning on the springback can be ignored. Comparison with finite element method (FEM) simu-lating results shows that the predicted results by the analytical model accord well with simulation results by FEM. In addition to that, the bending ability—the limit bending ratio for a given sheet thickness and material properties was also determined.展开更多
An analytical model on the normal perforation of reinforced concrete slabs is constructed. The effect of reinforcing bars is further hybridized in a general three-stage model consisting of initial cratering, tunnellin...An analytical model on the normal perforation of reinforced concrete slabs is constructed. The effect of reinforcing bars is further hybridized in a general three-stage model consisting of initial cratering, tunnelling and shear plugging. Besides three dimensionless numbers, i. e., the impact function I, the geometry function of projectile N and the dimensionless thickness of concrete target X, which are employed to predict the ballistic performance of perforation of concrete slabs, the reinforcement ratio Ps of concrete and the tensile strength fs of reinforcing bars are considered as the other main factors influencing the perforation process. Simpler solutions of ballistic performances of normal perforation of reinforced concrete slabs are formulated. Theoretical predictions agree well with individual published experimental data.展开更多
The stability of dams and their foundations is an important problem to which dam engineers have paid close attention over the years. This paper presented two methods to analyze the stability of a gravity dam and its f...The stability of dams and their foundations is an important problem to which dam engineers have paid close attention over the years. This paper presented two methods to analyze the stability of a gravity dam and its foundation. The direct analysis method was based on a rigid limit equilibrium method which regarded both dam and the rock foundation as undeformable rigid bodies. In this method, the safety factor of potential sliding surfaces was computed directly. The second method, the indirect analysis method, was based on elasto-plastic theory and employs nonlinear finite element method (FEM) in the analysis of stresses and deformation in the dam and its foundation. The determination of the safety degree of the structure was based on the convergence and abrupt the change criterion. The results obtained showed that structures' constituent material behavior played an active role in the failure of engineered structures in addition to the imposed load.展开更多
A three-dimensional finite element model was established for the milling of thin-walled parts. The physical model of the milling of the part was established using the AdvantEdge FEM software as the platform. The alumi...A three-dimensional finite element model was established for the milling of thin-walled parts. The physical model of the milling of the part was established using the AdvantEdge FEM software as the platform. The aluminum alloy impeller was designated as the object to be processed and the boundary conditions which met the actual machining were set. Through the solution, the physical quantities such as the three-way cutting force, the tool temperature, and the tool stress were obtained, and the calculation of the elastic deformation of the thin-walled blade of the free-form surface at the contact points between the tool and the workpiece was realized. The elastic deformation law of the thin-walled blade was then predicted. The results show that the maximum deviation between the predicted value and the actual measured machining value of the elastic deformation was 26.055 μm; the minimum deviation was 2.011 μm, with the average deviation being 10.154 μm. This shows that the prediction is in close agreement with the actual result.展开更多
The molecular dynamics(MD)model ofα-Al_(2)O_(3) nanowires in bending is established by using LAMMPS to calculate the atomic stress and strain at different loading rates in order to study the effect of loading rate on...The molecular dynamics(MD)model ofα-Al_(2)O_(3) nanowires in bending is established by using LAMMPS to calculate the atomic stress and strain at different loading rates in order to study the effect of loading rate on the bending mechanical behaviors of theα-Al_(2)O_(3) nanowires.Research results show that the maximum surface stress−rotation angle curves ofα-Al_(2)O_(3) nanowires at different loading rates are all divided into three stages of elastic deformation,plastic deformation and failure,where the elastic limit point can be determined by the curve symmetry during loading and unloading cycle.The loading rate has great influence on the plastic deformation but little on the elastic modulus ofα-Al_(2)O_(3) nanowires.When the loading rate is increased,the plastic deformation stage is shortened and the material is easier to fail in brittle fracture.Therefore,the elastic limit and the strength limit(determined by the direct and indirect MD simulation methods)are closer to each other.The MD simulation result ofα-Al_(2)O_(3) nanowires is verified to be valid by the good agreement with the improved loop test results.The direct MD method becomes an effective way to determine the elastic limit and the strength limit of nanoscale whiskers failed in brittle or ductile fracture at arbitrary loading rate.展开更多
The analytical model for springback in arc bending of sheet metal can serve as an excellent design support.The amount of springback is considerably influenced by the geometrical and the material parameters associated ...The analytical model for springback in arc bending of sheet metal can serve as an excellent design support.The amount of springback is considerably influenced by the geometrical and the material parameters associated with the sheet metal.In addition,the applied load during the bending also has a significant influence.Although a number of numerical techniques have been used for this purpose,only few analytical models that can provide insight into the phenomenon are available.A phenomenological model for predicting the springback in arc bending was proposed based on strain as well as deformation energy based approaches.The results of the analytical model were compared with the published experimental as well as FE results of the authors,and the agreement was found to be satisfactory.展开更多
7039 Al alloy plates which were used as armor materials were produced by powder metallurgy method. The prepared mixed powders were pressed and plated by extrusion process. These plates, after being subjected to T6 hea...7039 Al alloy plates which were used as armor materials were produced by powder metallurgy method. The prepared mixed powders were pressed and plated by extrusion process. These plates, after being subjected to T6 heat treatment, were joined double-sided by friction stir welding method. Microstructure and microhardness of the welded plate were investigated. It was determined that the finest grain structure and the lowest hardness value occurred in the stir zone as 2-6 mm and HV 80.9, respectively. In order to determine the ballistic properties of welded plates, 7.62 mm armor piercing projectiles were shot to the base metal(BM), heat affected zone(HAZ), and thermomechanically affected zone+stir zone(TMAZ+SZ). Ballistic limits(v_(50)) of these zones were determined. The ballistic limits of the BM, TMAZ+SZ, and HAZ of the plate were approximately 14.7%, 15.3%, and 17.9% lower than that of the standard plate at the same thickness, respectively. It was determined that the armor piercing projectiles created petaling and ductile hole enlargement failure types at the armor plate. Ballistic and mechanical results can be enhanced by hot-cold rolling mills after extrusion and particle reinforcement.展开更多
文摘Micro/nano-thin films are widely used in the fields of micro/nano-electromechanical system(MEMS/NEMS)and flexible electronics,and their mechanical properties have an important impact on the stability and reliability of components.However,accurate characterization of the mechanical properties of thin films still faces challenges due to the complexity of film-substrate structure,and the characterization efficiency of traditional techniques is insufficient.In this paper,a high-throughput determination method of the elastic modulus of thin films is proposed based on the strain variance method,the feasibility of which is analyzed by the finite element method(FEM),and the specific tensile configuration with array-distributed thin films is designed and optimized.Based on the strain difference between the film-substrate region and the uncoated region,the elastic modulus of multiple films is obtained simultaneously,and the influences of film width,spacing,thickness,and distribution on the measurement of elastic modulus are elucidated.The results show that the change in film width has a more obvious effect on the elastic modulus determination than film spacing and thickness,i.e.,the larger the film width is,the closer the calculation results are to the theoretical value,and the change in calculation results tends to be stabilized when the film width increases to a certain length.Specifically,the simultaneous measurement of the elastic modulus of eight metal films on a polyimide(PI)substrate with a length of 110 mm and a width of 30 mm can be realized,and the testing throughput can be further increased with the extension of the substrate length.This study provides an efficient and low-cost method for measuring the elastic modulus of thin films,which is expected to accelerate the development of new thin film materials.
基金Project(30770576) supported by the National Natural Science Foundation of ChinaProject(2007AA03Z114) supported by Hi-tech Research and Development Program of ChinaProject supported by State Key Laboratory of Powder Metallurgy,China
文摘The effect of structure,elastic modulus and thickness of lower modulus layer in porous titanium implants on the stress distribution at the implant-bone interface was investigated.Three-dimensional finite element models of different titanium implants were constructed.The structures of the implants included the whole lower modulus style (No.1),bio-mimetic style (No.2),the whole lower modulus style in cancellous bone (No.3) and the whole dense style No.4.The stress distributions at bone-implant interface under static loading were analyzed using Ansys Workbench 10.0 software.The results indicated that the distribution of interface stress is strongly depended on the structure of the implants.The maximum stresses in cancellous bone and root region of implant No.2 are lower than those in the other three implants.A decrease in the modulus of the low modulus layer facilitates the interface stress transferring.Increasing the thickness of the low modulus layer can reduce the stress and induce a more uniform stress distribution at the interface.Among the four implants,biomimetic style implant No.2 is superior in transferring implant-bone interface stress to surrounding bones.
基金Project(2012 DFG51540)supported by the Ministry of Science and Technology of China
文摘Terminal ballistic tests using 7.62 mm armor-piercing incendiary (API) projectiles were performed to evaluate the resistance to penetration of Ti-5Al-5Mo-5V-3Cr-IZr (Ti-55531) alloy. The dynamic properties were determined by a split Hopkinson pressure bar (SHPB) test system. Ti-55531 plates were subjected to two kinds of heat treatments, leading to the formation of high-strength and high-toughness plates. The results of SHPB test exhibit that the maximum impact absorbed energy of the high-strength plate at a strain rate of 2200 s^-1 is 270 MJ/m^3; however, the maximum value for the high-toughness plate at a strain rate of 4900 s^-1 is 710 MJ/m^3. The ballistic limit velocities for the high-strength and high-toughness plates with dimensions of 300 mm×300 mm×8 mm are 330 and 390 m/s, respectively. Excellent dynamic properties of Ti-55531 alloy correspond to good resistance to penetration. The microstructure evolution related to various impact velocities are observed to investigate the failure mechanism.
基金Project(50175034) supported by the National Natural Science Foundation of China
文摘In the incremental sheet forming (ISF) process, springback is a very important factor that affects the quality of parts. Predicting and controlling springback accurately is essential for the design of the toolpath for ISF. A three-dimensional elasto-plastic finite element model (FEM) was developed to simulate the process and the simulated results were compared with those from the experiment. The springback angle was found to be in accordance with the experimental result, proving the FEM to be effective. A coupled artificial neural networks (ANN) and finite element method technique was developed to simulate and predict springback responses to changes in the processing parameters. A particle swarm optimization (PSO) algorithm was used to optimize the weights and thresholds of the neural network model. The neural network was trained using available FEM simulation data. The results showed that a more accurate prediction of s!oringback can be acquired using the FEM-PSONN model.
文摘The penetration resistance of Kevlar-129 fiber reinforced composite materials was investigated with AUTODYN software.The ballistic limits of the fragment that pierced 6kinds of target plates were obtained by finite element simulation when the 10 g fragment simulation projectile(FSP)impacting to the target plates of different thickness values of 8,10,12,14,16 and 18mm with appropriate velocity,respectively,and the influences of thickness on the ballistic limits and the specific energy absorption were analyzed.The results show that the ballistic limit of Kevlar-129 fiber reinforced composite plates presents linear growth with the increase of the target thickness in the range from 8to 18 mm.The specific energy absorption of plates presents approximately linear growth,but there is slightly slow growth in the range from 10 to 16mm of the target thickness.It also can be found that the influences of plate thickness and surface density on the varying pattern of specific energy absorption are almost the same.Therefore,both of them can be used to characterize the variation of specific energy absorption under the impact of the FSP fragment.
文摘In order to study the laws of the extrusion pressure changing with the extrusion parameters in the process of hydrostatic extrusion for the tungsten alloys, the large deformation elasto plastic theory and the software of ANSYS 5 5 are used to carry out the numerical simulation research. The laws of the extrusion pressure changing with the extrusion parameters, such as the die angle, extrusion ratio, and friction coefficient, are obtained. The simulation results are in good agreement with the experimental ones, and the simulated results are believable.
基金sponsed by National Natural Science Foundation of China(NSFC,Grant No.41304077)the Natural Basic Research Program of China(the“973 Project,”Grant No.2013CB733303)Postdoctoral Science Foundation of China(Grant No.2014T70740)
文摘During seismic wave propagation on a free surface, a strong material contrast boundary develops in response to interference by P- and S- waves to create a surface-wave phenomenon. To accurately determine the effects of this interface on surface-wave propagation, the boundary conditions must be accurately modeled. In this paper, we present a numerical approach based on the dynamic poroelasticity for a space–time-domain staggered-grid finite-difference simulation in porous media that contain a free-surface boundary. We propose a generalized stess mirror formulation of the free-surface boundary for solids and fluids in porous media for the grid mesh on which lays the free-surface plane. Its analog is that used for elastic media, which is suitable for precise and stable Rayleigh-type surface-wave modeling. The results of our analysis of first kind of Rayleigh (R1) waves obtained by this model demonstrate that the discretization of the mesh in a similar way to that for elastic media can realize stable numerical solutions with acceptable precision. We present numerical examples demonstrating the efficiency and accuracy of our proposed method.
文摘In order to investigate the mechanical response of reflective cracking in asphalt concrete pavement under dynamic vehicle loading, a finite element model is established in ABAQUS. The viscoelastic behavior is described by a prony series which is calculated through nonlinear fitting to the creep test data obtained in the laboratory. Based on the viscoelastic theory, the time-temperature equivalence principle, fracture mechanics and the dynamic finite element method, both the Jintegral and the mix-mode stress intensity factor are utilized as fracture evaluation parameters, and a half-sine dynamic loading is used to simulate the vehicle loading. Finally, the mechanical response of the pavement reflective cracking is analyzed under different vehicle speeds, different environmental conditions and various damping factors. The results indicate that increasing either the vehicle speed or the structure damping factor decreases the maximum values of fracture parameters, while the structure temperature has little effect on the fracture parameters. Due to the fact that the vehicle speed can be enhanced by improving the road traffic conditions, and the pavement damping factor can become greater by modifying the components of materials, the development of reflective cracking can be delayed and the asphalt pavement service life can be effectively extended through both of these ways.
文摘It is a very important and complex task to estimate the thermo-elasticproperties of a textile structural composite. In this paper, the finite element method (FEM) wasused for the prediction of the orthotropic thermo-elastic properties of a composite reinforced byglass fiber knitted fabric. In order to define the final 3-D configuration of the loop reinforcingstructure, the interactions between the adjacent loops, the large displacement and the contactelements without friction were considered. The values predicted were compared with the experimentalresults.
基金sponsored by the National Natural Science Foundation of China Research(Grant No.41274138)the Science Foundation of China University of Petroleum(Beijing)(No.KYJJ2012-05-02)
文摘The perfectly matched layer (PML) is a highly efficient absorbing boundary condition used for the numerical modeling of seismic wave equation. The article focuses on the application of this technique to finite-element time-domain numerical modeling of elastic wave equation. However, the finite-element time-domain scheme is based on the second- order wave equation in displacement formulation. Thus, the first-order PML in velocity-stress formulation cannot be directly applied to this scheme. In this article, we derive the finite- element matrix equations of second-order PML in displacement formulation, and accomplish the implementation of PML in finite-element time-domain modeling of elastic wave equation. The PML has an approximate zero reflection coefficients for bulk and surface waves in the finite-element modeling of P-SV and SH wave propagation in the 2D homogeneous elastic media. The numerical experiments using a two-layer model with irregular topography validate the efficiency of PML in the modeling of seismic wave propagation in geological models with complex structures and heterogeneous media.
基金Projects(U1564202,51705018)supported by the National Natural Science Foundation of ChinaProject supported by the Beijing Laboratory of Modern Transportation Metal Materials and Processing Technology and the Beijing Key Laboratory of Metal Forming Lightweight,China。
文摘In this paper,the springback of TC4 titanium alloy under hot stamping condition was studied by means of experiment and numerical analysis.Firstly,an analytical model was established to predict the V-shaped springback angleΔαunder the stretch-bending conditions.The model took into account of blank holder force,friction,property of the material,thickness of the sheet and the neutral layer shift.Then,the influence of several process parameters on springback was studied by experiment and finite element simulation using a V-shaped stamping tool.In the hot stamping tests,the titanium alloy sheet fractured seriously at room temperature.The titanium alloy has good formability when the initial temperature of the sheet is 750–900°C.However,the springback angle of formed parts is large and decreases with increasing temperature.The springback angleΔαdecreased by 50%from 0.5°to 0.25°,and the angleΔβdecreased by 46.7%from 1.5°to 0.8°when the initial temperature of sheet increased from 750°C to 900°C.The springback angle of titanium alloy sheet increases gradually with the increase of the punch radius,because of the increase of elastic recovery,the complex distribution of stress,the length of forming region and the decreasing degree of stress.Compared with the simulation results,the analytical model can better predict the springback angleΔα.
基金The National Natural Science Foundation of China(No.50323008,31070517)Scientific Research Foundation of Guangxi Education Department(No.201203YB097)
文摘Finite dement formulations are used to simulate the evolution of the elastoplastic response of functionally graded cemented carbides (FGCC) due to thermal loading. The geometry of specimens is an axisymmetric solid cylinder with a two-dimensional gradient. The elastoplastic constitutive relationship is developed by constraint factors. Numerical results show that compressive stresses occur in the surface zone and tensile stresses in the cobalt rich zone when the temperature drops from the initial stress-free temperature of 800 to 0℃. The maximum value of the surface compressive stress is 254 MPa and the maximum value of the tensile stress is 252 MPa in the cobalt rich zones. When the cobalt concentration difference in the specimens is equal to or greater than 0.3, there is pronounced plastic flow in cobalt rich zone. When the temperature heats up from 0 to 800 ℃, the total plastic strain reaches 0.001 4. Plastic flow has a significant effect on the reduction of thermal stress concentration.
文摘Springback is caused by the redistribution of stress in sheet material after the tooling is removed. Precise prediction of sheet springback is very important in die design. Based on Hill’s yielding criterion and plane strain condition, an analytical model is proposed in this paper which takes into account the effects of contact pressure, the length of bending arm between the punch and die, transverse stress, neutral surface shifting and sheet thickness thinning on the sheet springback of V-bending. The predicted results by this analytical model indicated that the contact pressure and transverse stress have much effect on the springback when the bending ratio (the ratio of punch radius to sheet thickness) is less than five. The contact pressure declined when the length of bending arm goes up, which means that shorter length of bending arm will result in larger springback. The effect of neutral surface shifting on the springback is less than that of contact pressure and decreases with the bending ratio. However, this research showed that the influence of thickness thinning on the springback can be ignored. Comparison with finite element method (FEM) simu-lating results shows that the predicted results by the analytical model accord well with simulation results by FEM. In addition to that, the bending ability—the limit bending ratio for a given sheet thickness and material properties was also determined.
基金Supported by the State Key Lab of Explosion Science and Technology of BIT Under Contract (No. KFJJ04-3)
文摘An analytical model on the normal perforation of reinforced concrete slabs is constructed. The effect of reinforcing bars is further hybridized in a general three-stage model consisting of initial cratering, tunnelling and shear plugging. Besides three dimensionless numbers, i. e., the impact function I, the geometry function of projectile N and the dimensionless thickness of concrete target X, which are employed to predict the ballistic performance of perforation of concrete slabs, the reinforcement ratio Ps of concrete and the tensile strength fs of reinforcing bars are considered as the other main factors influencing the perforation process. Simpler solutions of ballistic performances of normal perforation of reinforced concrete slabs are formulated. Theoretical predictions agree well with individual published experimental data.
文摘The stability of dams and their foundations is an important problem to which dam engineers have paid close attention over the years. This paper presented two methods to analyze the stability of a gravity dam and its foundation. The direct analysis method was based on a rigid limit equilibrium method which regarded both dam and the rock foundation as undeformable rigid bodies. In this method, the safety factor of potential sliding surfaces was computed directly. The second method, the indirect analysis method, was based on elasto-plastic theory and employs nonlinear finite element method (FEM) in the analysis of stresses and deformation in the dam and its foundation. The determination of the safety degree of the structure was based on the convergence and abrupt the change criterion. The results obtained showed that structures' constituent material behavior played an active role in the failure of engineered structures in addition to the imposed load.
基金Project(U1530138)supported by the National Natural Science Foundation of ChinaProject(A1-8903-17-0103)supported by the Natural Science Foundation of Shanghai Municipal Education Commission,China
文摘A three-dimensional finite element model was established for the milling of thin-walled parts. The physical model of the milling of the part was established using the AdvantEdge FEM software as the platform. The aluminum alloy impeller was designated as the object to be processed and the boundary conditions which met the actual machining were set. Through the solution, the physical quantities such as the three-way cutting force, the tool temperature, and the tool stress were obtained, and the calculation of the elastic deformation of the thin-walled blade of the free-form surface at the contact points between the tool and the workpiece was realized. The elastic deformation law of the thin-walled blade was then predicted. The results show that the maximum deviation between the predicted value and the actual measured machining value of the elastic deformation was 26.055 μm; the minimum deviation was 2.011 μm, with the average deviation being 10.154 μm. This shows that the prediction is in close agreement with the actual result.
基金the National Natural Science Foundation of China(No.12162010)the Science Technology Base and Talent Special Project of Guangxi,China(No.AD19245143)Natural Science Foundation of Guangxi,China(No.2021GXNSFAA220087).
文摘The molecular dynamics(MD)model ofα-Al_(2)O_(3) nanowires in bending is established by using LAMMPS to calculate the atomic stress and strain at different loading rates in order to study the effect of loading rate on the bending mechanical behaviors of theα-Al_(2)O_(3) nanowires.Research results show that the maximum surface stress−rotation angle curves ofα-Al_(2)O_(3) nanowires at different loading rates are all divided into three stages of elastic deformation,plastic deformation and failure,where the elastic limit point can be determined by the curve symmetry during loading and unloading cycle.The loading rate has great influence on the plastic deformation but little on the elastic modulus ofα-Al_(2)O_(3) nanowires.When the loading rate is increased,the plastic deformation stage is shortened and the material is easier to fail in brittle fracture.Therefore,the elastic limit and the strength limit(determined by the direct and indirect MD simulation methods)are closer to each other.The MD simulation result ofα-Al_(2)O_(3) nanowires is verified to be valid by the good agreement with the improved loop test results.The direct MD method becomes an effective way to determine the elastic limit and the strength limit of nanoscale whiskers failed in brittle or ductile fracture at arbitrary loading rate.
文摘The analytical model for springback in arc bending of sheet metal can serve as an excellent design support.The amount of springback is considerably influenced by the geometrical and the material parameters associated with the sheet metal.In addition,the applied load during the bending also has a significant influence.Although a number of numerical techniques have been used for this purpose,only few analytical models that can provide insight into the phenomenon are available.A phenomenological model for predicting the springback in arc bending was proposed based on strain as well as deformation energy based approaches.The results of the analytical model were compared with the published experimental as well as FE results of the authors,and the agreement was found to be satisfactory.
文摘7039 Al alloy plates which were used as armor materials were produced by powder metallurgy method. The prepared mixed powders were pressed and plated by extrusion process. These plates, after being subjected to T6 heat treatment, were joined double-sided by friction stir welding method. Microstructure and microhardness of the welded plate were investigated. It was determined that the finest grain structure and the lowest hardness value occurred in the stir zone as 2-6 mm and HV 80.9, respectively. In order to determine the ballistic properties of welded plates, 7.62 mm armor piercing projectiles were shot to the base metal(BM), heat affected zone(HAZ), and thermomechanically affected zone+stir zone(TMAZ+SZ). Ballistic limits(v_(50)) of these zones were determined. The ballistic limits of the BM, TMAZ+SZ, and HAZ of the plate were approximately 14.7%, 15.3%, and 17.9% lower than that of the standard plate at the same thickness, respectively. It was determined that the armor piercing projectiles created petaling and ductile hole enlargement failure types at the armor plate. Ballistic and mechanical results can be enhanced by hot-cold rolling mills after extrusion and particle reinforcement.