With the significant discharge of antibiotic wastewater into the aquatic and terrestrial ecosystems, antibiotic pollution has become a serious problem and presents a hazardous risk to the environment. To address such ...With the significant discharge of antibiotic wastewater into the aquatic and terrestrial ecosystems, antibiotic pollution has become a serious problem and presents a hazardous risk to the environment. To address such issues, various investigations on the removal of antibiotics have been undertaken. Photocatalysis has received tremendous attention owing to its great potential in removing antibiotics from aqueous solutions via a green, economic, and effective process. However, such a technology employing traditional photocatalysts suffers from major drawbacks such as light absorption being restricted to the UV spectrum only and fast charge recombination. To overcome these issues, considerable effort has been directed towards the development of advanced visible light-driven photocatalysts. This mini review summarises recent research progress in the state-of-the-art design and fabrication of photocatalysts with visible-light response for photocatalytic degradation of antibiotic wastewater. Such design strategies involve the doping of metal and non-metal into ultraviolet light-driven photocatalysts, development of new semiconductor photocatalysts, construction of heterojunction photocatalysts, and fabrication of surface plasmon resonance-enhanced photocatalytic systems. Additionally, some perspectives on the challenges and future developments in the area of photocatalytic degradation of antibiotics are provided.展开更多
The formations and transformations of the chemical bonds of reactants and intermediates on cata- lyst surfaces occur in conjunction with the evolution of heat during catalytic reactions. Measure- ment of this evolved ...The formations and transformations of the chemical bonds of reactants and intermediates on cata- lyst surfaces occur in conjunction with the evolution of heat during catalytic reactions. Measure- ment of this evolved heat is helpful in terms of understanding the nature of the interactions be- tween the catalyst and the adsorbed species, and provides insights into the reactivity of the catalyst. Although various techniques have previously been applied to assessments of evolved heat, direct measurements using a Tian-Calvet microcalorimeter are currently the most reliable method for this purpose. In this review, we summarize the relationship between the adsorption/reaction energetics determined by microcalorimetry and the reactivities of supported catalysts, and examine the im- portant role of microcalorimetry in understanding catalytic performance from the energetic point of view.展开更多
Sulfated zirconia-lanthana (SO4^2-/ZrO2-La2O3) precursors were prepared by ultrasonic coprecipitation method and followed by aging at different temperature. The precursors were treated by 0.5 mol/L H2SO4. Samples of...Sulfated zirconia-lanthana (SO4^2-/ZrO2-La2O3) precursors were prepared by ultrasonic coprecipitation method and followed by aging at different temperature. The precursors were treated by 0.5 mol/L H2SO4. Samples of SO4^2-/ZrO2-La2O3 nano-crystalline catalysts were obtained by baking the treated precursors at different temperatures. The acidic properties of SO4^2-/ZrO2-La2O3 were tested by the Hammett indicator method. The phase composition, specific area, particle structure, and surface state were characterized by X-ray diffraction, BET, transmission electron microscopy, infrared spectrum, and X-ray photoelectron spec- troscopy. The catalytic activities were estimated by esterification of acetic acid with glycerin. It was shown that the catalyst prepared by ultrasonic stirring and low temperature (-15 ℃) exhibited highly active sites and high catalytic property.展开更多
C1 chemistry is the essence of coal chemistry and natural gas chemistry. Catalytic methods to efficiently convert C1 molecules into fuels and chemicals have been extensively studied. Syngas(CO +H_2) conversion is t...C1 chemistry is the essence of coal chemistry and natural gas chemistry. Catalytic methods to efficiently convert C1 molecules into fuels and chemicals have been extensively studied. Syngas(CO +H_2) conversion is the most important industrial reaction system in C1 chemistry, and Fe and Co catalysts, two major industrial catalysts, have been the focus of fundamental research and industrial application. In the last decade, considerable research efforts have been devoted to discoveries concerning catalyst structure and increasing market demands for olefins and oxygenates. Since the development of efficient catalysts would strongly benefit from catalyst design and the establishment of a new reaction system, this review comprehensively overviews syngas conversion in three main reactions, highlights the advances recently made and the challenges that remain open, and will stimulate future research activities. The first part of the review summarizes the breakthroughs in Fischer-Tropsch synthesis regarding the optimization of activity and stability, determination of the active phase, and mechanistic studies. The second part overviews the modulation of catalytic structure and product selectivity for Fischer-Tropsch to olefins(FTO). Catalysts designed to produce higher alcohols, as well as to tune product selectivity in C1 chemistry, are described in the third section. Finally, present challenges in syngas conversion are proposed, and the solutions and prospects are discussed from the viewpoint of fundamental research and practical application. This review summarizes the latest advances in the design, preparation, and application of Fe/Co-based catalysts toward syngas conversion and presents the challenges and future directions in producing value-added fuels.展开更多
Deep hydrodesulfurization (HDS) is an important process to produce high quality liquid fuels with ultra-low sul- fur. Process intensification for deep HDS could be implemented by developing new active catalysts and/...Deep hydrodesulfurization (HDS) is an important process to produce high quality liquid fuels with ultra-low sul- fur. Process intensification for deep HDS could be implemented by developing new active catalysts and/or new types of reactors. In this work, the kinetics of dibenzothiophene (DBT) hydrodesulfurization over Ni-P/SBA-15/ cordierite catalyst was investigated at 340-380 ℃ and 3.0-5.0 MPa. The first-order reaction model with respect to both DBT and H2 was used to fit the kinetics data in a batch recycle operation system. It is found that both the activation energy and rate constant over the Ni-P monolithic catalyst under our operating conditions are close to those over conventionally used HDS catalysts. Comparative performance studies of two types of reactors, i.e., trickle bed reactor and monolithic reactor, were performed based on reactor modeling and simulation. The results indicate that the productivity of the monolithic reactor is 3 times higher than that of the trickle bed reactor on a catalyst weight basis since effective utilization of the catalyst is higher in the monolithic reactor, but the volumetric productivity of the monolithic reactor is lower for HDS of DBT. Based on simulation results, a two- reactor-in-series configuration for hydrodesulfurization is proposed, in which a monolithic reactor is followed by a tickled bed reactor so as to attain intensified performance of the system converting fuel oil of different sulfur-containing compounds. It is illustrated that the two reactor scheme outperforms the trickle bed reactor both on reactor volume and catalyst mass bases while the content of sulfur is reduced from 200 μg·g-1 to about 10 μ·g-1.展开更多
Ordered mesoporous Mn2O3 (meso‐Mn2O3) and meso‐Mn2O3‐supported Pd, Pt, and Pd‐Pt alloy x(PdyPt)/meso‐Mn2O3; x = (0.10?1.50) wt%; Pd/Pt molar ratio (y) = 4.9?5.1 nanocatalysts were prepared using KIT‐6‐templated...Ordered mesoporous Mn2O3 (meso‐Mn2O3) and meso‐Mn2O3‐supported Pd, Pt, and Pd‐Pt alloy x(PdyPt)/meso‐Mn2O3; x = (0.10?1.50) wt%; Pd/Pt molar ratio (y) = 4.9?5.1 nanocatalysts were prepared using KIT‐6‐templated and poly(vinyl alcohol)‐protected reduction methods, respectively.The meso‐Mn2O3 had a high surface area, i.e., 106 m2/g, and a cubic crystal structure. Noble‐metalnanoparticles (NPs) of size 2.1?2.8 nm were uniformly dispersed on the meso‐Mn2O3 surfaces. AlloyingPd with Pt enhanced the catalytic activity in methane combustion; 1.41(Pd5.1Pt)/meso‐Mn2O3gave the best performance; T10%, T50%, and T90% (the temperatures required for achieving methaneconversions of 10%, 50%, and 90%) were 265, 345, and 425 °C, respectively, at a space velocity of20000 mL/(g?h). The effects of SO2, CO2, H2O, and NO on methane combustion over1.41(Pd5.1Pt)/meso‐Mn2O3 were also examined. We conclude that the good catalytic performance of1.41(Pd5.1Pt)/meso‐Mn2O3 is associated with its high‐quality porous structure, high adsorbed oxygen species concentration, good low‐temperature reducibility, and strong interactions between Pd‐Pt alloy NPs and the meso‐Mn2O3 support.展开更多
We have developed a new method to grow uniform graphene films directly on various substrates, such as insulators, semiconductors, and even metals, without using any catalyst. The growth was carried out using a remote ...We have developed a new method to grow uniform graphene films directly on various substrates, such as insulators, semiconductors, and even metals, without using any catalyst. The growth was carried out using a remote plasma enhancement chemical vapor deposition (r-PECVD) system at relatively low temperatures, enabling the deposition of graphene films up to 4-inch wafer scale. Scanning tunneling microscopy (STM) confirmed that the films are made up of nanocrystalline graphene particles of tens of nanometers in lateral size. The growth mechanism for the nanographene is analogous to that for diamond grown by PECVD methods, in spite of sp2 carbon atoms being formed in the case of graphene rather than sp3 carbon atoms as in diamond. This growth approach is simple, low-cost, and scalable, and might have potential applications in fields such as thin film resistors, gas sensors, electrode materials, and transparent conductive films.展开更多
基金supported by the National Natural Science Foundation of China(21421001,21276116,21477050,21301076,21303074)Natural Science Foundation of Jiangsu Province(BK20140530,BK20150482)+5 种基金China Postdoctoral Science Foundation(2015M570409)Chinese-German Cooperation Research Project(GZ1091)Program for High-Level Innovative and Entrepreneurial Talents in Jiangsu ProvinceProgram for New Century Excellent Talents in University(NCET-13-0835)Henry Fok Education Foundation(141068)Six Talents Peak Project in Jiangsu Province(XCL-025)~~
文摘With the significant discharge of antibiotic wastewater into the aquatic and terrestrial ecosystems, antibiotic pollution has become a serious problem and presents a hazardous risk to the environment. To address such issues, various investigations on the removal of antibiotics have been undertaken. Photocatalysis has received tremendous attention owing to its great potential in removing antibiotics from aqueous solutions via a green, economic, and effective process. However, such a technology employing traditional photocatalysts suffers from major drawbacks such as light absorption being restricted to the UV spectrum only and fast charge recombination. To overcome these issues, considerable effort has been directed towards the development of advanced visible light-driven photocatalysts. This mini review summarises recent research progress in the state-of-the-art design and fabrication of photocatalysts with visible-light response for photocatalytic degradation of antibiotic wastewater. Such design strategies involve the doping of metal and non-metal into ultraviolet light-driven photocatalysts, development of new semiconductor photocatalysts, construction of heterojunction photocatalysts, and fabrication of surface plasmon resonance-enhanced photocatalytic systems. Additionally, some perspectives on the challenges and future developments in the area of photocatalytic degradation of antibiotics are provided.
基金supported by the National Natural Science Foundation of China (21573232, 21576251, 21676269)National Key Projects for Funda-mental Research and Development of China (2016YFA0202801)Department of Science and Technology of Liaoning province under contract of 2015020086–101~~
文摘The formations and transformations of the chemical bonds of reactants and intermediates on cata- lyst surfaces occur in conjunction with the evolution of heat during catalytic reactions. Measure- ment of this evolved heat is helpful in terms of understanding the nature of the interactions be- tween the catalyst and the adsorbed species, and provides insights into the reactivity of the catalyst. Although various techniques have previously been applied to assessments of evolved heat, direct measurements using a Tian-Calvet microcalorimeter are currently the most reliable method for this purpose. In this review, we summarize the relationship between the adsorption/reaction energetics determined by microcalorimetry and the reactivities of supported catalysts, and examine the im- portant role of microcalorimetry in understanding catalytic performance from the energetic point of view.
文摘Sulfated zirconia-lanthana (SO4^2-/ZrO2-La2O3) precursors were prepared by ultrasonic coprecipitation method and followed by aging at different temperature. The precursors were treated by 0.5 mol/L H2SO4. Samples of SO4^2-/ZrO2-La2O3 nano-crystalline catalysts were obtained by baking the treated precursors at different temperatures. The acidic properties of SO4^2-/ZrO2-La2O3 were tested by the Hammett indicator method. The phase composition, specific area, particle structure, and surface state were characterized by X-ray diffraction, BET, transmission electron microscopy, infrared spectrum, and X-ray photoelectron spec- troscopy. The catalytic activities were estimated by esterification of acetic acid with glycerin. It was shown that the catalyst prepared by ultrasonic stirring and low temperature (-15 ℃) exhibited highly active sites and high catalytic property.
文摘C1 chemistry is the essence of coal chemistry and natural gas chemistry. Catalytic methods to efficiently convert C1 molecules into fuels and chemicals have been extensively studied. Syngas(CO +H_2) conversion is the most important industrial reaction system in C1 chemistry, and Fe and Co catalysts, two major industrial catalysts, have been the focus of fundamental research and industrial application. In the last decade, considerable research efforts have been devoted to discoveries concerning catalyst structure and increasing market demands for olefins and oxygenates. Since the development of efficient catalysts would strongly benefit from catalyst design and the establishment of a new reaction system, this review comprehensively overviews syngas conversion in three main reactions, highlights the advances recently made and the challenges that remain open, and will stimulate future research activities. The first part of the review summarizes the breakthroughs in Fischer-Tropsch synthesis regarding the optimization of activity and stability, determination of the active phase, and mechanistic studies. The second part overviews the modulation of catalytic structure and product selectivity for Fischer-Tropsch to olefins(FTO). Catalysts designed to produce higher alcohols, as well as to tune product selectivity in C1 chemistry, are described in the third section. Finally, present challenges in syngas conversion are proposed, and the solutions and prospects are discussed from the viewpoint of fundamental research and practical application. This review summarizes the latest advances in the design, preparation, and application of Fe/Co-based catalysts toward syngas conversion and presents the challenges and future directions in producing value-added fuels.
基金Supported by the State Key Development Program for Basic Research of China(2006CB202503)
文摘Deep hydrodesulfurization (HDS) is an important process to produce high quality liquid fuels with ultra-low sul- fur. Process intensification for deep HDS could be implemented by developing new active catalysts and/or new types of reactors. In this work, the kinetics of dibenzothiophene (DBT) hydrodesulfurization over Ni-P/SBA-15/ cordierite catalyst was investigated at 340-380 ℃ and 3.0-5.0 MPa. The first-order reaction model with respect to both DBT and H2 was used to fit the kinetics data in a batch recycle operation system. It is found that both the activation energy and rate constant over the Ni-P monolithic catalyst under our operating conditions are close to those over conventionally used HDS catalysts. Comparative performance studies of two types of reactors, i.e., trickle bed reactor and monolithic reactor, were performed based on reactor modeling and simulation. The results indicate that the productivity of the monolithic reactor is 3 times higher than that of the trickle bed reactor on a catalyst weight basis since effective utilization of the catalyst is higher in the monolithic reactor, but the volumetric productivity of the monolithic reactor is lower for HDS of DBT. Based on simulation results, a two- reactor-in-series configuration for hydrodesulfurization is proposed, in which a monolithic reactor is followed by a tickled bed reactor so as to attain intensified performance of the system converting fuel oil of different sulfur-containing compounds. It is illustrated that the two reactor scheme outperforms the trickle bed reactor both on reactor volume and catalyst mass bases while the content of sulfur is reduced from 200 μg·g-1 to about 10 μ·g-1.
基金supported by the Ph.D.Program Foundation of Ministry of Education of China(20131103110002)the NNSF of China(21377008)+2 种基金National High Technology Research and Development Program(863 Program,2015AA034603)Foundation on the Creative Research Team Con-struction Promotion Project of Beijing Municipal InstitutionsScientific Research Base Construction-Science and Technology Creation Plat-form-National Materials Research Base Construction~~
文摘Ordered mesoporous Mn2O3 (meso‐Mn2O3) and meso‐Mn2O3‐supported Pd, Pt, and Pd‐Pt alloy x(PdyPt)/meso‐Mn2O3; x = (0.10?1.50) wt%; Pd/Pt molar ratio (y) = 4.9?5.1 nanocatalysts were prepared using KIT‐6‐templated and poly(vinyl alcohol)‐protected reduction methods, respectively.The meso‐Mn2O3 had a high surface area, i.e., 106 m2/g, and a cubic crystal structure. Noble‐metalnanoparticles (NPs) of size 2.1?2.8 nm were uniformly dispersed on the meso‐Mn2O3 surfaces. AlloyingPd with Pt enhanced the catalytic activity in methane combustion; 1.41(Pd5.1Pt)/meso‐Mn2O3gave the best performance; T10%, T50%, and T90% (the temperatures required for achieving methaneconversions of 10%, 50%, and 90%) were 265, 345, and 425 °C, respectively, at a space velocity of20000 mL/(g?h). The effects of SO2, CO2, H2O, and NO on methane combustion over1.41(Pd5.1Pt)/meso‐Mn2O3 were also examined. We conclude that the good catalytic performance of1.41(Pd5.1Pt)/meso‐Mn2O3 is associated with its high‐quality porous structure, high adsorbed oxygen species concentration, good low‐temperature reducibility, and strong interactions between Pd‐Pt alloy NPs and the meso‐Mn2O3 support.
基金This work was supported by the Institute of Physics Start-up Founding, 100 Talents Program of the Chinese Academy of Sciences (CAS), the Science Foundation of CAS, the National Science Foundation of China (NSFC) (grant Nos. 10974226 and 11074288), and the National 973 project of China (grant No. 2010CB934202).
文摘We have developed a new method to grow uniform graphene films directly on various substrates, such as insulators, semiconductors, and even metals, without using any catalyst. The growth was carried out using a remote plasma enhancement chemical vapor deposition (r-PECVD) system at relatively low temperatures, enabling the deposition of graphene films up to 4-inch wafer scale. Scanning tunneling microscopy (STM) confirmed that the films are made up of nanocrystalline graphene particles of tens of nanometers in lateral size. The growth mechanism for the nanographene is analogous to that for diamond grown by PECVD methods, in spite of sp2 carbon atoms being formed in the case of graphene rather than sp3 carbon atoms as in diamond. This growth approach is simple, low-cost, and scalable, and might have potential applications in fields such as thin film resistors, gas sensors, electrode materials, and transparent conductive films.