期刊文献+
共找到6,722篇文章
< 1 2 250 >
每页显示 20 50 100
面向实际化工过程故障诊断的强化深度卷积神经网络模型构建与应用
1
作者 张佳鑫 张淼 +1 位作者 戴一阳 董立春 《化工进展》 EI CAS CSCD 北大核心 2024年第9期4833-4844,共12页
基于数据驱动的故障诊断技术可以帮助操作人员及时有效发现和检测异常情况,是当前工业与大数据融合的热点领域之一。深度卷积神经网络(deep convolutional neural networks,DCNN)是最常用的基于数据驱动的故障诊断模型,但其激活过程存... 基于数据驱动的故障诊断技术可以帮助操作人员及时有效发现和检测异常情况,是当前工业与大数据融合的热点领域之一。深度卷积神经网络(deep convolutional neural networks,DCNN)是最常用的基于数据驱动的故障诊断模型,但其激活过程存在正负值计算不匹配以及信息流通效率低导致的参数冗余问题。本文提出一种基于最大平滑单元(maximum smoothing unit,MSF)函数的新激活机制克服传统激活函数的缺点,并且引入注意力机制(attention mechanism)结合门控循环单元(gated recurrent unit,GRU)提升DCNN的信息流通效率克服参数冗余问题,以综合提升传统DCNN模型的故障诊断性能。强化深度卷积神经网络(enhanced deep convolutional neural networks,EDCNN)的现有模型表现出显著提高的故障诊断性能,这在工业致动器控制系统和工业酸性气体吸收过程中的应用得到了验证。两个过程的平均故障诊断率均超过99.0%。 展开更多
关键词 故障诊断 强化深度卷积神经网络 过程控制 系统工程 激活函数
下载PDF
融合多小波分解的深度卷积神经网络轴承故障诊断方法 被引量:1
2
作者 陶唐飞 周文洁 +1 位作者 况佳臣 徐光华 《西安交通大学学报》 EI CAS CSCD 北大核心 2024年第5期31-41,共11页
针对卷积神经网络及其与信号降噪预处理集成方法面临高噪声环境和低质量数据挑战时难以有效地提取信号有用特征的问题,提出了一种融合Geronimo-Hardin-Massopust多小波分解的深度卷积神经网络模型(GHMMD-DCNN)。该模型思想是将多小波包... 针对卷积神经网络及其与信号降噪预处理集成方法面临高噪声环境和低质量数据挑战时难以有效地提取信号有用特征的问题,提出了一种融合Geronimo-Hardin-Massopust多小波分解的深度卷积神经网络模型(GHMMD-DCNN)。该模型思想是将多小波包分解与卷积神经网络深度融合,即设计多个一级多小波分解层以提取信号的低频分量和高频分量,再将多个一级多小波分解层与卷积层交替联接,使模型能够多尺度地提取并学习信号有用的时频域信息,信号分解和特征学习交替执行,进而实现强噪声鲁棒特征提取。在不同工况下的航空高速轴承振动数据上进行测试,结果表明:所提模型训练时能够快速达到稳定收敛,并且识别准确率均能达到99.9%以上;提出的方法在强噪声干扰下的故障辨识准确度和识别稳定性均优于对比方法,验证了其优秀的抗噪声干扰能力;在少训练样本测试中,提出的方法在单类训练样本数量为60时的平均诊断准确率高达91.19%,相比于其他方法最低提升了13.19%,验证了GHMMD-DCNN模型具有更优的低样本泛化能力。 展开更多
关键词 多小波分解 卷积神经网络 深度学习 轴承故障诊断
下载PDF
基于深度卷积神经网络的频高图特征提取研究
3
作者 鲁转侠 华彩成 +6 位作者 冯健 蔚娜 王岳松 冯静 娄鹏 王严 李春晓 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2024年第9期3290-3300,共11页
本文提出了一种利用深度卷积神经网络的频高图特征提取方法,在频高图不同层回波信息标记的基础上,构建包含降采样部分和上采样部分的频高图回波识别网络模型,实现了频高图不同回波信息自动识别.利用试验获取的频高图数据,通过人工对频... 本文提出了一种利用深度卷积神经网络的频高图特征提取方法,在频高图不同层回波信息标记的基础上,构建包含降采样部分和上采样部分的频高图回波识别网络模型,实现了频高图不同回波信息自动识别.利用试验获取的频高图数据,通过人工对频高图中电离层不同层的回波信息分别标记,生成网络模型样本数据集.以随机方式,选取样本数据集80%的数据作为训练数据,其余数据作为测试数据.经网络模型训练和测试,结果显示网络模型能够自动有效地识别测试频高图中不同层的回波信息.在此基础上,结合数字图像处理中的腐蚀算法和连通域思想,针对性地设计滤波器,滤除已识别回波信息中的噪声、干扰、多跳回波,能够实现测试频高图特征参数的有效提取.并且通过与传统方法比较,该方法特征提取精度整体上优于传统方法,可为频高图特征的自动、精确提取提供一种新的技术方法. 展开更多
关键词 频高图 深度卷积神经网络 临界频率
下载PDF
基于深度卷积神经网络算法和先验知识构建冠心病患者大鱼际望诊模型的思路与方法
4
作者 刘大胜 李玉坤 +4 位作者 赵志伟 孙晨格 杨伟 王丽颖 韩学杰 《中华中医药学刊》 CAS 北大核心 2024年第5期17-19,共3页
基于全息理论的中医望诊可以辅助诊断西医疾病,但目前中医望诊主要依靠名老中医药专家的经验传承,存在望诊客观化、标准化程度不够,缺乏行业内认可度高的望诊转化技术的问题。而望诊融合人工智能信息化技术,可以提升中医望诊客观化、标... 基于全息理论的中医望诊可以辅助诊断西医疾病,但目前中医望诊主要依靠名老中医药专家的经验传承,存在望诊客观化、标准化程度不够,缺乏行业内认可度高的望诊转化技术的问题。而望诊融合人工智能信息化技术,可以提升中医望诊客观化、标准化的水平,可以有效地降低疾病的恶化率和病死率,促进中医望诊经验的转化。据此,结合前期开展的大鱼际特征与冠心病关系研究,得出大鱼际望诊可以用于冠心病早期预警筛查。以大鱼际望诊和冠心病之间的关系为例,将先验知识和深度卷积神经网络算法深度融合,将特征提取和分类合为一体,利用深度学习端对端的显著特点,输入观察到的原始大鱼际图像像素数据或信息,通过对大鱼际照片的大量深度学习,构建冠心病患者的关键特征要素,融合先验知识后,输出是否为冠心病的分类结果,中间为深层的网络结构。这一思路将提出一种中医望诊客观化、标准化的智能化算法,促进中医望诊经验的转化思路与方法,以提高基层群众的疾病预警筛查能力,服务“健康中国”战略。 展开更多
关键词 图像信息 深度卷积神经网络 先验知识 大鱼际望诊 冠心病
下载PDF
基于深度卷积神经网络的电子玻璃缺陷分类方法
5
作者 李苑 于浩 +5 位作者 金良茂 曹志强 陈家睿 郑际杰 韩高荣 刘涌 《中国建材科技》 CAS 2024年第S01期17-23,共7页
电子玻璃是信息显示产业的关键基础材料之一。近年来,显示产业向大尺寸化、超高清和轻薄化发展,对于电子玻璃基板的质量提出了更高的要求。机器视觉检测具有速度快、精度高、成本低、稳定性好等优点,被广泛应用于各种工业场景中。图像... 电子玻璃是信息显示产业的关键基础材料之一。近年来,显示产业向大尺寸化、超高清和轻薄化发展,对于电子玻璃基板的质量提出了更高的要求。机器视觉检测具有速度快、精度高、成本低、稳定性好等优点,被广泛应用于各种工业场景中。图像处理算法、识别分类算法是机器视觉检测的关键技术。本文针对基于深度卷积神经网络的整图分类方法在电子玻璃表面缺陷检测领域的应用,从图像数据处理、卷积神经网络构建、训练调参、评价标准等方面介绍其研究进展,并总结部分应用实例,对电子玻璃缺陷分类未来的研究方向进行展望。 展开更多
关键词 电子玻璃 机器视觉 深度卷积神经网络 缺陷分类
下载PDF
基于卷积神经网络的深度学习方法对压力性损伤分期的研究
6
作者 陈健 须月萍 +3 位作者 徐晓丹 丁雨 王甘红 王珍妮 《护士进修杂志》 2024年第17期1800-1806,共7页
目的构建和验证用于压力性损伤(pressure injury,PI)自动化分期的深度学习模型。方法从常熟市第一人民医院PI电子化管理系统中选取2021年1月-2023年6月期间的201张图片,将PI分为4期,其中Ⅰ期21张、Ⅱ期41张、高分期101张、深部组织损伤3... 目的构建和验证用于压力性损伤(pressure injury,PI)自动化分期的深度学习模型。方法从常熟市第一人民医院PI电子化管理系统中选取2021年1月-2023年6月期间的201张图片,将PI分为4期,其中Ⅰ期21张、Ⅱ期41张、高分期101张、深部组织损伤38张。使用基于卷积神经网络(Convolutional Neural Network,CNN)框架的DenseNet121、EfficientNet、ResNet101和ResNet50神经网络建立针对PI分期任务的深度学习模型;模型评价指标包括准确率、召回率、精确率、F1值和读片时间。将深度学习模型的读片表现与2位不同年资护士进行比较。最后,对性能最佳的CNN模型进行可解释性分析并对压力性损伤视频进行实时预测。结果4种深度学习模型测试集中DenseNet121展现出较好的准确性(0.895),其次为resnet50(0.816),均高于高年资护士(0.805)和低年资护士(0.756)。同时,所有深度学习模型在测试集中读片用时均<10 s,速度快于护士(均>250 s)。最后,我们使用了梯度加权分类激活映射(Gradient Weighted Class Activation Mapping,Grad-CAM)、SHAP技术,对最优模型DenseNet121进行深入分析,突显出图像中对模型判断影响较大的关键区域,并实现了对PI视频的实时预测。结论在PI风险评估方面,成功地建立了一个表现优于护士人工评估的深度学习模型。此基于计算机视觉的深度学习模型可辅助护士进行更精准的PI分期,揭示了深度学习在临床医学应用中的广阔前景。 展开更多
关键词 深度学习 压力性损伤 人工智能 卷积神经网络
下载PDF
基于迁移学习和深度卷积神经网络的胸腰椎骨折AI分类研究
7
作者 郝引 陈馨 +2 位作者 莫云海 吴禄源 仝敬博 《智能科学与技术学报》 CSCD 2024年第3期319-328,共10页
传统的胸腰椎骨折影像辅助分类方法准确率低、泛化能力差,为此提出一种基于深度卷积神经网络方法辅助诊断的胸腰椎骨折AI分类方法。收集四川省中西医结合医院胸腰椎骨折患者CT影像图片共698张,建立数据集,其中单纯压缩性骨折(A类)279张... 传统的胸腰椎骨折影像辅助分类方法准确率低、泛化能力差,为此提出一种基于深度卷积神经网络方法辅助诊断的胸腰椎骨折AI分类方法。收集四川省中西医结合医院胸腰椎骨折患者CT影像图片共698张,建立数据集,其中单纯压缩性骨折(A类)279张,爆裂性骨折(B类)295张,正常(C类)124张。对传统卷积神经网络模型ResNet-50进行改进并融入迁移学习,对数据集进行训练,获得胸腰椎骨折AI分类模型。采用混淆矩阵评估预测模型分类性能,模型的训练集和验证集准确率分别为95.75%和96.36%,表明训练得到的智能分类模型具有较好的准确率和泛化能力。本文提出胸腰椎骨折影像辅助分类方法,可以提高人工诊断的效率和准确率。 展开更多
关键词 胸腰椎骨折 深度卷积神经网络 AI分类方法 泛化能力
下载PDF
基于深度卷积神经网络的青菜和杂草识别
8
作者 金慧萍 牟海雯 +2 位作者 刘腾 于佳琳 金小俊 《中国农业科技导报》 CAS CSCD 北大核心 2024年第8期122-130,共9页
针对青菜田间杂草种类繁多且分布复杂导致识别效率低、精度差和稳健性不足等问题,以苗期青菜及其伴生杂草为研究对象,提出了一种基于深度卷积神经网络的青菜和杂草识别方法。首先使用图像处理方法标记出包含绿色植物的图像,进而利用神... 针对青菜田间杂草种类繁多且分布复杂导致识别效率低、精度差和稳健性不足等问题,以苗期青菜及其伴生杂草为研究对象,提出了一种基于深度卷积神经网络的青菜和杂草识别方法。首先使用图像处理方法标记出包含绿色植物的图像,进而利用神经网络模型对青菜和杂草进行区分。为探究不同神经网络模型的识别效果,分别选取DenseNet模型、GoogLeNet模型和ResNet模型对图像中包含青菜或者杂草图像进行识别,并以F1值、总体准确率和识别速度作为评价依据。结果表明,3种神经网络模型均能有效区分青菜和杂草,其中ResNet模型为最优模型,其在测试集的总体准确率和识别速度分别为97.2%和78.34帧·s^(-1)。提出的青菜和杂草识别方法可有效降低杂草识别的复杂度,并能够提升识别的稳健性和泛化能力,为青菜田间杂草精准防控的研究奠定基础。 展开更多
关键词 深度学习 卷积神经网络 青菜识别 杂草识别
下载PDF
基于深度卷积神经网络的智能机器人语音自动识别方法 被引量:2
9
作者 相增辉 张国梁 +2 位作者 庞渊源 陈鑫 王鑫 《自动化技术与应用》 2024年第4期43-46,共4页
外界环境的干扰会降低智能机器人语音识别效果,为提升智能机器人的识别效果,提出基于深度卷积神经网络的智能机器人语音自动识别方法。该方法首先分析了智能机器人智能化服务特性,以此为基础采集智能机器人语音信息数据;利用构建的伽玛... 外界环境的干扰会降低智能机器人语音识别效果,为提升智能机器人的识别效果,提出基于深度卷积神经网络的智能机器人语音自动识别方法。该方法首先分析了智能机器人智能化服务特性,以此为基础采集智能机器人语音信息数据;利用构建的伽玛通滤波器降低智能机器人语音噪声数据,进一步提取语音信息能量特征;将信息能量特征输入到深度卷积神经网络识别模型内分类训练,实现智能机器人语音自动识别。实验结果表明,该方法的语音识别率达到了90%以上,识别耗时低于1.5 s,提升了智能机器人的语音识别效果。 展开更多
关键词 深度卷积神经网络 智能机器人语音识别 数据滤波 分类训练
下载PDF
基于深度卷积神经网络的齿轮箱健康状态识别
10
作者 董洋 王琳 +1 位作者 张驰 赵群 《计算机仿真》 2024年第5期455-459,共5页
齿轮箱为许多机械设备的重要传动部件,其健康运行状态识别对于设备稳定运行、安全运转等具有非常重要的意义。为准确地评价齿轮箱的健康状态,提出一种基于深度卷积神经网络的齿轮箱健康状态识别方法。本文首先采用变分模态分解(Variatio... 齿轮箱为许多机械设备的重要传动部件,其健康运行状态识别对于设备稳定运行、安全运转等具有非常重要的意义。为准确地评价齿轮箱的健康状态,提出一种基于深度卷积神经网络的齿轮箱健康状态识别方法。本文首先采用变分模态分解(Variational Mode Decomposition,VMD)与小波阈值(Wavelet Threshold,WT)结合的方式对采集的齿轮箱振动信号进行降噪。其次,对降噪后的信号进行线性及非线性特征提取。最后,采用深度卷积神经网络(Deep Convolutional Neural Network,DCNN)建立齿轮箱的健康状态识别模型。实验结果表明,所提方法对齿轮箱健康状态的正确识别率达到97.5%以上。 展开更多
关键词 齿轮箱 变分模态分解 深度卷积神经网络 健康识别
下载PDF
基于深度卷积神经网络的物联网异构信息安全传输算法
11
作者 王庆宇 余战秋 《齐齐哈尔大学学报(自然科学版)》 2024年第2期60-65,共6页
为了提高物联网信息传输的安全性,提出基于深度卷积神经网络的物联网异构信息安全传输算法。在建立卷积神经网络基础架构的基础上构建深度卷积神经网络模型,利用均值池化方法计算异构数据特征点的平均值,分类异构数据特征,完成物联网异... 为了提高物联网信息传输的安全性,提出基于深度卷积神经网络的物联网异构信息安全传输算法。在建立卷积神经网络基础架构的基础上构建深度卷积神经网络模型,利用均值池化方法计算异构数据特征点的平均值,分类异构数据特征,完成物联网异构数据特征识别。对特征识别后的物联网异构数据进行非对称加密,结合数字签名技术完成物联网异构数据安全传输。仿真测试结果表明,方法的时间复杂度、响应时间、丢包率均较低,且带宽利用率较高。 展开更多
关键词 深度卷积神经网络 物联网 异构信息 安全传输
下载PDF
基于图神经网络和深度强化学习的二维矩形排样优化方法研究
12
作者 张磊 刘雪梅 《锻压装备与制造技术》 2024年第2期117-122,共6页
本文结合生产实际中的零件母板带约束二维矩形下料优化问题,设计并提出了二维矩形排样问题的异构图和深度强化学习的算法架构。通过图神经网络和强化学习算法对排样问题中零件和母板的特征进行高度的集成和学习,并对零件的排布顺序和排... 本文结合生产实际中的零件母板带约束二维矩形下料优化问题,设计并提出了二维矩形排样问题的异构图和深度强化学习的算法架构。通过图神经网络和强化学习算法对排样问题中零件和母板的特征进行高度的集成和学习,并对零件的排布顺序和排布位置进行决策,在更短的时间内得到相比于传统优化算法更优秀的计算结果。实验证明,本文的深度强化学习算法训练的模型可以在较短时间得到良好的排样结果,且基于小规模问题训练的模型解决较大规模的问题实例也可以获得较好的效果,证明了算法具有较好的泛化能力。 展开更多
关键词 下料优化问题 矩形排样优化 深度强化学习 异构图神经网络
下载PDF
ECPANet:一种基于注意力的深度卷积神经网络通道剪枝方法
13
作者 余显冰 杨礼友 李健 《现代计算机》 2024年第7期9-16,共8页
在深度学习领域中,卷积神经网络的快速发展导致了先进模型需要大量的计算和存储资源。然而,将这些模型部署到计算和存储资源受限且高实时性的嵌入式设备上变得越来越具有挑战性。为解决这个问题,通道剪枝已成为网络压缩的主要方法之一... 在深度学习领域中,卷积神经网络的快速发展导致了先进模型需要大量的计算和存储资源。然而,将这些模型部署到计算和存储资源受限且高实时性的嵌入式设备上变得越来越具有挑战性。为解决这个问题,通道剪枝已成为网络压缩的主要方法之一。传统的通道剪枝方法存在着精度下降和难以确定通道重要性的问题。针对这些问题,提出了一种高效的通道注意力剪枝方法。通过将ECPANet模块嵌入到深度卷积神经网络中以增强其表征能力,评估每个通道在特征映射中的重要性,并根据通道重要性因子剪枝掉不重要的通道以减小模型的大小和计算量。实验结果表明,与传统的通道剪枝方法相比,基于注意力的通道剪枝方法能够更准确地确定通道重要性,从而提高剪枝效果和模型性能。 展开更多
关键词 深度卷积神经网络 通道剪枝 注意力机制
下载PDF
基于深度卷积神经网络的单向阀泄漏模式识别
14
作者 郭建政 童成彪 《湖南农业大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第2期100-104,126,共6页
以SV10PB1-30B液控单向阀为研究对象,利用传感器采集3种不同泄漏模式下10个阀芯的振动信号,设计深度卷积模型,开展不同测点(单向阀的上表面和阀座)、不同信号特征提取方式(原始信号、特征值、特征图)下的模式识别研究。结果表明:基于轴... 以SV10PB1-30B液控单向阀为研究对象,利用传感器采集3种不同泄漏模式下10个阀芯的振动信号,设计深度卷积模型,开展不同测点(单向阀的上表面和阀座)、不同信号特征提取方式(原始信号、特征值、特征图)下的模式识别研究。结果表明:基于轴向冲击信号特征值和深度卷积神经网络的模型能有效识别故障类型,验证集上的识别准确率高达88.293%,是基于特征图的7.79倍,是基于原始时域冲击信号的1.16倍;训练步数以100的较优,同时该模型对正常阀芯和不同损伤阀芯的分类效果明显。 展开更多
关键词 单向阀 深度卷积神经网络 故障诊断 模式识别
下载PDF
基于低成本FPGA的深度卷积神经网络加速器设计
15
作者 杨统 肖昊 《电子测量技术》 北大核心 2024年第10期184-190,共7页
现有的深度卷积神经网络在推理过程中产生大量的层间特征数据。为了在嵌入式系统中保持实时处理,需要大量的片上存储来缓存层间特征映射。本文提出了一种层间特征压缩技术,以显著降低片外存储器访问带宽。此外,本文针对FPGA中BRAM的特... 现有的深度卷积神经网络在推理过程中产生大量的层间特征数据。为了在嵌入式系统中保持实时处理,需要大量的片上存储来缓存层间特征映射。本文提出了一种层间特征压缩技术,以显著降低片外存储器访问带宽。此外,本文针对FPGA中BRAM的特点提出了一种通用性的卷积计算方案,并从电路层面做出了优化,既减少了访存次数又提高了DSP的计算效率,从而大幅提高了计算速度。与CPU运行MobileNetV2相比,文章提出的深度卷积神经网络加速器在性能上提升了6.3倍;与同类型的DCNN加速器相比,文章提出的DCNN加速器在DSP性能效率上分别提升了17%和156%。 展开更多
关键词 深度卷积神经网络 现场可编程门阵列 深度学习
下载PDF
基于卷积神经网络的深度学习技术在软件缺陷检测中的应用
16
作者 胡韬 杨阳 《黑龙江科学》 2024年第14期146-148,共3页
探讨了卷积神经网络(CNN)在软件缺陷检测中的应用。采用深度学习技术,模拟图像识别中的模式识别能力,对代码进行自动分析,以识别潜在缺陷。实验结果显示,该方法的缺陷检测正确率达到了94.28%~97.51%,说明利用CNN进行软件缺陷检测能够有... 探讨了卷积神经网络(CNN)在软件缺陷检测中的应用。采用深度学习技术,模拟图像识别中的模式识别能力,对代码进行自动分析,以识别潜在缺陷。实验结果显示,该方法的缺陷检测正确率达到了94.28%~97.51%,说明利用CNN进行软件缺陷检测能够有效提升检测速度和准确性,对于降低开发成本、提高软件质量及可靠性具有重要意义。 展开更多
关键词 深度学习 应用软件 缺陷检测 卷积神经网络 系统框架
下载PDF
基于卷积神经网络深度学习的地质断层智能识别方法
17
作者 罗家举 《现代矿业》 CAS 2024年第8期7-10,共4页
为解决传统机器学习方法识别断裂构造能力较差的问题,提出了基于卷积神经网络的UNet++网络结构模型用于识别地质断层。模型的建立过程中引入了不同注意力机制与损失函数,可以更好地实现语义深度学习与特征融合,并进行了相关性指标分析... 为解决传统机器学习方法识别断裂构造能力较差的问题,提出了基于卷积神经网络的UNet++网络结构模型用于识别地质断层。模型的建立过程中引入了不同注意力机制与损失函数,可以更好地实现语义深度学习与特征融合,并进行了相关性指标分析与图像分析。结果表明:WCE损失函数对应的预测图具有最清晰的输出效果,ECA+UNet++模型利用WCE损失函数的训练效果最佳,识别的准确率也更高。将采用WCE损失函数的ECA+UNet++模型在官渡河煤矿断层区域进行应用,可以对断层位置进行智能识别,并且对地下噪音的降噪处理较好;表明采用引入ECA注意力机制的UNet++网络结构模型能保证对断层识别的效率与精度。 展开更多
关键词 卷积神经网络 地质断层 智能识别 深度学习 计算机图像
下载PDF
基于深度卷积神经网络的多媒体视觉图像重构处理研究
18
作者 孙英 刘忠利 《信息记录材料》 2024年第8期138-140,共3页
图像重构方法往往依赖于手动设计的特征和先验知识,导致图像峰值信噪比低,为此进行基于深度卷积神经网络的多媒体视觉图像重构处理研究。首先,对视觉图像去噪处理后,采用多方向局部二值模式提取多媒体视觉图像的特征。其次,采用线性融... 图像重构方法往往依赖于手动设计的特征和先验知识,导致图像峰值信噪比低,为此进行基于深度卷积神经网络的多媒体视觉图像重构处理研究。首先,对视觉图像去噪处理后,采用多方向局部二值模式提取多媒体视觉图像的特征。其次,采用线性融合算法来融合不同来源的图像信息,利用深度卷积神经网络进行图像分类。最后,采用匹配跟踪技术实现图像重构,恢复出高质量的图像。研究结果表明:随着采样率的增加,与现有图像重构方法相比,所研究方法峰值信噪比上升趋势明显,数值增加,重构质量更高。 展开更多
关键词 深度卷积神经网络 多媒体视觉图像 图像重构 重构处理
下载PDF
基于足底压力和卷积长短期记忆神经网络的前交叉韧带断裂智能辅助诊断
19
作者 李玳 王天牧 +5 位作者 张思 秦跃 谢福贵 刘辛军 聂振国 黄红拾 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第1期109-117,共9页
提出一种基于卷积长短期记忆神经网络的深度学习模型PressureConvLSTM,用来提取行走过程中足底压力的空间特征和时序特征,并进行步态分类。通过对前交叉韧带断裂患者的足底压力数据分析,实现智能辅助诊断。结合临床数据的实验结果表明,P... 提出一种基于卷积长短期记忆神经网络的深度学习模型PressureConvLSTM,用来提取行走过程中足底压力的空间特征和时序特征,并进行步态分类。通过对前交叉韧带断裂患者的足底压力数据分析,实现智能辅助诊断。结合临床数据的实验结果表明,PressureConvLSTM模型对前交叉韧带断裂的辅助诊断,能够达到95%的预测准确度;与卷积神经网络等其他模型相比,准确度得到大幅度提升。 展开更多
关键词 智能诊断 前交叉韧带断裂 足底压力 深度学习 卷积长短期记忆神经网络
下载PDF
基于离散剪切波与优化深度卷积神经网络的图像降噪方法
20
作者 白华军 李荣昌 +2 位作者 司洁戈 张义 张景熙 《电声技术》 2024年第1期146-152,共7页
海洋试验图像通常受到海洋气象条件、海水光照折射和海洋深度等因素的影响,导致在海洋中采集的图像包含严重的噪声。为了提高海洋试验图像的清晰度和降噪性,提出一种基于离散剪切波与优化深度卷积神经网络相结合的海洋试验图像降噪方法... 海洋试验图像通常受到海洋气象条件、海水光照折射和海洋深度等因素的影响,导致在海洋中采集的图像包含严重的噪声。为了提高海洋试验图像的清晰度和降噪性,提出一种基于离散剪切波与优化深度卷积神经网络相结合的海洋试验图像降噪方法。采用离散剪切波变换分解海洋试验图像,能有效从图像中提取不同方向和频率的特征。利用优化深度卷积神经网络强大的图像特征提取能力,经网络模型训练后,能获取图像中的关键特征,达到降噪的目的。在验证实验中,所提方法与传统图像降噪方法相比,能有效保留图像的纹理和细节特性,获得了较好的降噪效果,有助于提高海洋试验图像的清晰度和降噪性。 展开更多
关键词 离散剪切波变换 降噪方法 深度卷积神经网络 海洋试验
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部