在光伏系统中,光伏阵列往往会受到阴影条件(partial shading condition,PSC)的影响,造成光伏系统输出功率偏低以及功率-电压(P-V)特性曲线出现多峰值的现象,从而导致常规最大功率跟踪(maximum power point tracking,MPPT)算法易陷入局...在光伏系统中,光伏阵列往往会受到阴影条件(partial shading condition,PSC)的影响,造成光伏系统输出功率偏低以及功率-电压(P-V)特性曲线出现多峰值的现象,从而导致常规最大功率跟踪(maximum power point tracking,MPPT)算法易陷入局部最优的问题.对此,设计一种基于迁移强化学习(transfer reinforcement learning,TRL)的MPPT算法.该算法将连续变量的动作空间分解为若干个小范围的子搜索空间,从而有效提高TRL的学习效率.同时,引入知识迁移,即将旧任务的最优知识矩阵应用到新任务中,进而大幅提高TRL的收敛速度.通过对3种算例的研究,即恒温变光照强度、变温变光照强度和香港实地测试,其仿真结果表明,与传统增量电导法(incremental conductance,INC)、遗传算法(genetic algorithm,GA)、粒子群优化(particle swarm optimization,PSO)算法、人工蜂群(artificial bee colony,ABC)算法、布谷鸟算法(cuckoo search algorithm,CSA)、教-学优化(teaching-learning based optimization,TLBO)算法以及Q学习算法相比,TRL能在PSC下实现最快速的全局最大功率跟踪,同时具有最小的功率波动.最后,基于dSpace的硬件在环实验验证了TRL的硬件可行性.展开更多