Static and dynamic splitting tests were conducted on ring marble specimens with different internal diameters to study the tensile strength and failure modes with the change of the ratio of internal radius to external ...Static and dynamic splitting tests were conducted on ring marble specimens with different internal diameters to study the tensile strength and failure modes with the change of the ratio of internal radius to external radius (ρ) under different loading rates. The results show that the dynamic tensile strength of disc rock specimen is approximately five times its static tensile strength. The failure modes of ring specimens are related to the dimension of the internal hole and loading rate. Under static loading tests, when the ratio of internal radius to external radius of the rock ring is small enough (ρ〈0.3), specimens mostly split along the diametral loading line. With the increase of the ratio, the secondary cracks are formed in the direction perpendicular to the loading line. Under dynamic loading tests, specimens usually break up into four pieces. When the ratio ρreaches 0.5, the secondary cracks are formed near the input bar. The tensile strength calculated by Hobbs’ formula is greater than the Brazilian splitting strength. The peak load and the radius ratio show a negative exponential relationship under static test. Using ring specimen to determine tensile strength of rock material is more like a test indicator rather than the material properties.展开更多
To investigate the influence of microwave heating on the dynamic behavior and failure mechanisms of rock,dynamic compression tests were conducted on microwave-irradiated sandstone specimens using a modified split Hopk...To investigate the influence of microwave heating on the dynamic behavior and failure mechanisms of rock,dynamic compression tests were conducted on microwave-irradiated sandstone specimens using a modified split Hopkinson pressure bar(SHPB)system.Experimental results show that microwave radiation can effectively weaken the compressive strength of sandstone.Rock specimens show three different failure modes under impact load:tensile failure,tensile−shear composite failure and compressive−shear failure.The dynamic Poisson’s ratio,calculated using the measured P-and S-wave velocities,is introduced to describe the deformation characteristics of sandstone.With the increase in microwave power and heating time,the Poisson’s ratio declines first and then increases slightly,and the turning point occurs at 244.6℃.Moreover,the microstructural characteristics reveal that microwave radiation produces dehydration,pore expansion,and cracking of the rock.The damage mechanisms caused by microwave radiation are discussed based on thermal stress and steam pressure inside the rock,which provides a reasonable explanation for the experimental results.展开更多
Based on the characteristics of 1D waves,the stress uniformity process in specimens under different loading conditions of rectangular and half-sine input waves was analyzed in split Hopkinson pressure bar (SHPB) test....Based on the characteristics of 1D waves,the stress uniformity process in specimens under different loading conditions of rectangular and half-sine input waves was analyzed in split Hopkinson pressure bar (SHPB) test.The results show that the times of an elastic wave propa-gating from one end to the other in a specimen to attain stress equilibrium,is related to input wave-forms and relative mechanical impedance between the specimen and the input/output bars.Here-into,with the increae of the relative impedance,the times decreases under rectangular input waves loading,while it increases under half-sine input wave loading.The dimensionless stress value of specimen corresponding to the status of stress equilibrium increases with the increase of the rela-tive mechanical impedance.However,the dimensionless stress value under half-sine input wave loading is significantly lower than the value under rectangular input wave loading for specimen with low mechanical impedance,and the relative differentia of the dimensionless stress values under two loading conditions decreases with the increase of the relative mechanical impedance.In gen-eral,the forced state of specimen with relatively low mechanical impedance under half-sine input wave loading is evidently superior to the state under rectangular input wave loading in SHPB test,and the advantages of forced state under half-sine input wave loading turns weak with the increase of the relative mechanical impedance.展开更多
Based on uniaxial compression experimental results on fractured sandstone with grouting and anchorage, we studied the strength and deformation properties, the failure model, crack formation and evolution laws of fract...Based on uniaxial compression experimental results on fractured sandstone with grouting and anchorage, we studied the strength and deformation properties, the failure model, crack formation and evolution laws of fractured sandstone under different conditions of anchorage. The experimental results show that the strength and elastic modulus of fractured sandstone with different fracture angles are significantly lower than those of intact sandstone. Compared with the fractured samples without anchorage,the peak strength, residual strength, peak and ultimate axial strain of fractured sandstone under different anchorage increase by 64.5–320.0%, 62.8–493.0%, and 31.6–181.4%, respectively. The number of bolts and degree of pre-stress has certain effects on the peak strength and failure model of fractured sandstone. The peak strength of fractured sandstone under different anchorage increases to some extent, and the failure model of fractured sandstone also transforms from tensile failure to tensile–shear mixed failure with the number of bolts. The pre-stress can restrain the formation and evolution process of tensile cracks, delay the failure process of fractured sandstone under anchorage and impel the transformation of failure model from brittle failure to plastic failure.展开更多
A stratified rock mass model was founded by FLAC^3D. The failure mode and anisotropic characteristic of strength for stratified rock mass were analyzed. The analysis results show that the numerical simulation can visu...A stratified rock mass model was founded by FLAC^3D. The failure mode and anisotropic characteristic of strength for stratified rock mass were analyzed. The analysis results show that the numerical simulation can visually reflect the failure modes of rock samples under different inclination angles β of structural plane. The stiffness of rock sample before peak strength changes in the compressive procedure. With the increase of β, the compressive strength σc of rock sample decreases firstly and then increases; when β is in the range of 20°-30° and 80°-90°, σc has the largest sensitivity to r; while β falls in the range of 30°-70°, σc varies little. When φj〈β〈90° ( φj is friction angle of structure plane), the results obtained from numerical simulation and theoretical analysis are in almost the same values; while β〈 φj or β=90°, they are in great different values. The results obtained from theoretical analysis are obvious larger than those from numerical simulation; and the results from numerical simulation can reflect the difference of compressive strength of rock samples for the two situations of β≥φj and β=90°, which is in more accordance with the real situation.展开更多
In order to study the strength failure and crack coalescence characteristics of cracked rocks, uniaxial compression experiments were conducted on cylindrical sandstone specimens, sampled from Longyou Grottoes of Zheji...In order to study the strength failure and crack coalescence characteristics of cracked rocks, uniaxial compression experiments were conducted on cylindrical sandstone specimens, sampled from Longyou Grottoes of Zhejiang Province, China, with a single pre-cut crack soaking in different chemical solutions. Based on the results of uniaxial compressive test under different chemical solutions and velocities of flow, the effect of strength and deformation characteristics and main modes of crack coalescence for cracked rocks under chemical corrosion were analyzed. The results show that the pH value and velocity of the chemical solutions both have great influence on the sandstone sample's uniaxial compressive strength and deformation characteristics. Cracked sandstone samples are tension-destructed under uniaxial compression, and the crack propagation directions are consistent with the loading direction. The phenomena of crack initiation, propagation and coalescence of sandstone are well observed. Four different crack types are identified based on the crack propagation mechanism by analyzing the ultimate failure modes of sandstone containing a single pre-cut fissure. The failure process of specimen in air is similar with the specimen under chemical solutions, however, the initial time of crack occuring in specimen under chemical solutions is generally earlier than that in the natural specimen, and the crack propagation and coalescence process of specimen under chemical solutions are longer than those of the natural specimen due to softening of structure of rock caused by hydro-chemical action. Immersion velocity of flow and chemical solutions does not have influence on the ultimate modes of crack coalescence.展开更多
This paper proposes an empirical formula to estimate the shear strength of hydraulic expansion rockbolts.The field experimental results were obtained from eleven pullout tests to evaluate the results computed by the p...This paper proposes an empirical formula to estimate the shear strength of hydraulic expansion rockbolts.The field experimental results were obtained from eleven pullout tests to evaluate the results computed by the proposed formula.It was found that shear resistance of hydraulic expansion rockbolts significantly depends on the uniaxial compressive strength and elastic modulus of rock,with high correlation coefficients of 0.7651 and0.8587,respectively.The developed formula enables estimation of the maximum pullout load in an analytical process without pullout tests in the field.Conversely,due to the poor interlocking at the initial pullout load,the measured displacements were higher than the estimated ones.To reduce the interlocking effects between bolt and rock,we recommend preloading of 29.4 kN.Preload allows reducing the distance between the measured and estimated displacement and making two load-displacement curves practically identical with marginal differences of 1.1 to 1.5 mm at the maximum pullout load.展开更多
The main objective of this study is to verify, through compression tests on different prisms, the vertical and horizontal deformability and the failure modes of the components of concrete blocks under compression. In ...The main objective of this study is to verify, through compression tests on different prisms, the vertical and horizontal deformability and the failure modes of the components of concrete blocks under compression. In this study two mortar mixes were tested, along with two types of prism, with and without the presence of a vertical joint. The conclusions were: the appearance of non-linearities of the masonry corresponds to an increase in the lateral strain due to extensive cracking of the material and a progressive increase in the Poisson ratio, the cracks in the three-block prisms built with the mortar type I were vertical, occurring symmetrically on both sides; the prisms built with mortar type II had, as a consequence of localized crushing, an association with vertical cracks due to the concentrations of stresses at some points, the presence of a vertical joint led to the appearance of separation cracks between the middle block and the vertical mortar joint, when the stress reached approximately 30% of the compressive strength of the set; the prisms with two whole blocks and one vertical joint (B) built with the mortars of mixes I and II had a compressive strength of the order of 42% and 66% of the prisms with three whole blocks (A), respectively.展开更多
ZnO nanomaterials have been shown to have novel applications in optoelectronics, energy harvesting and piezotronics, due to their coupled semiconducting and piezoelectric properties. Here a functional nanogenerator (...ZnO nanomaterials have been shown to have novel applications in optoelectronics, energy harvesting and piezotronics, due to their coupled semiconducting and piezoelectric properties. Here a functional nanogenerator (FNG) based on ZnO nanowire arrays has been fabricated, which can be employed to detect vibration in both self-powered (SP) and external-powered (EP) modes. In SP mode, the vibration responses of the FNG can be measured through converting mechanical energy directly into an electrical signal. The FNG shows consistent alternating current responses (relative error 〈 0.37%) at regular frequencies from 1 to 15 Hz. In EP mode, the current responses of FNG are significantly enhanced via the piezotronic effect. Under a forward bias of 3 V, the sensor presented a sensitivity of 3700% and an accurate measurement (relative error 〈 0.91%) of vibration frequencies in the range 0.05-15 Hz. The results show that this type of functional nanogenerator sensor can detect vibration in both SP and EP modes according to the demands of the applications.展开更多
基金Project(2015CB060200)supported by the National Basic Research Program of ChinaProject(51474250)supported by the National Natural Science Foundation of ChinaProject(2015JJ3166)supported by the Natural Science Foundation of Hunan Province,China
文摘Static and dynamic splitting tests were conducted on ring marble specimens with different internal diameters to study the tensile strength and failure modes with the change of the ratio of internal radius to external radius (ρ) under different loading rates. The results show that the dynamic tensile strength of disc rock specimen is approximately five times its static tensile strength. The failure modes of ring specimens are related to the dimension of the internal hole and loading rate. Under static loading tests, when the ratio of internal radius to external radius of the rock ring is small enough (ρ〈0.3), specimens mostly split along the diametral loading line. With the increase of the ratio, the secondary cracks are formed in the direction perpendicular to the loading line. Under dynamic loading tests, specimens usually break up into four pieces. When the ratio ρreaches 0.5, the secondary cracks are formed near the input bar. The tensile strength calculated by Hobbs’ formula is greater than the Brazilian splitting strength. The peak load and the radius ratio show a negative exponential relationship under static test. Using ring specimen to determine tensile strength of rock material is more like a test indicator rather than the material properties.
基金the National Natural Science Foundation of China(Nos.41972283,11972378)the National Key Scientific Instrument and Equipment Development,China(No.51927808)the Hunan Provincial Innovation Foundation for Postgraduate,China(No.CX2018B066).
文摘To investigate the influence of microwave heating on the dynamic behavior and failure mechanisms of rock,dynamic compression tests were conducted on microwave-irradiated sandstone specimens using a modified split Hopkinson pressure bar(SHPB)system.Experimental results show that microwave radiation can effectively weaken the compressive strength of sandstone.Rock specimens show three different failure modes under impact load:tensile failure,tensile−shear composite failure and compressive−shear failure.The dynamic Poisson’s ratio,calculated using the measured P-and S-wave velocities,is introduced to describe the deformation characteristics of sandstone.With the increase in microwave power and heating time,the Poisson’s ratio declines first and then increases slightly,and the turning point occurs at 244.6℃.Moreover,the microstructural characteristics reveal that microwave radiation produces dehydration,pore expansion,and cracking of the rock.The damage mechanisms caused by microwave radiation are discussed based on thermal stress and steam pressure inside the rock,which provides a reasonable explanation for the experimental results.
基金Supported by National Natural Science Foundation of China (No. 50490274,10472134).
文摘Based on the characteristics of 1D waves,the stress uniformity process in specimens under different loading conditions of rectangular and half-sine input waves was analyzed in split Hopkinson pressure bar (SHPB) test.The results show that the times of an elastic wave propa-gating from one end to the other in a specimen to attain stress equilibrium,is related to input wave-forms and relative mechanical impedance between the specimen and the input/output bars.Here-into,with the increae of the relative impedance,the times decreases under rectangular input waves loading,while it increases under half-sine input wave loading.The dimensionless stress value of specimen corresponding to the status of stress equilibrium increases with the increase of the rela-tive mechanical impedance.However,the dimensionless stress value under half-sine input wave loading is significantly lower than the value under rectangular input wave loading for specimen with low mechanical impedance,and the relative differentia of the dimensionless stress values under two loading conditions decreases with the increase of the relative mechanical impedance.In gen-eral,the forced state of specimen with relatively low mechanical impedance under half-sine input wave loading is evidently superior to the state under rectangular input wave loading in SHPB test,and the advantages of forced state under half-sine input wave loading turns weak with the increase of the relative mechanical impedance.
基金Financial support for this work, provided by the National Natural Science Foundation of China (Nos. 50774082, 50804046 and 51109209)
文摘Based on uniaxial compression experimental results on fractured sandstone with grouting and anchorage, we studied the strength and deformation properties, the failure model, crack formation and evolution laws of fractured sandstone under different conditions of anchorage. The experimental results show that the strength and elastic modulus of fractured sandstone with different fracture angles are significantly lower than those of intact sandstone. Compared with the fractured samples without anchorage,the peak strength, residual strength, peak and ultimate axial strain of fractured sandstone under different anchorage increase by 64.5–320.0%, 62.8–493.0%, and 31.6–181.4%, respectively. The number of bolts and degree of pre-stress has certain effects on the peak strength and failure model of fractured sandstone. The peak strength of fractured sandstone under different anchorage increases to some extent, and the failure model of fractured sandstone also transforms from tensile failure to tensile–shear mixed failure with the number of bolts. The pre-stress can restrain the formation and evolution process of tensile cracks, delay the failure process of fractured sandstone under anchorage and impel the transformation of failure model from brittle failure to plastic failure.
基金Project (50099620) supported by the National Natural Science Foundation of China
文摘A stratified rock mass model was founded by FLAC^3D. The failure mode and anisotropic characteristic of strength for stratified rock mass were analyzed. The analysis results show that the numerical simulation can visually reflect the failure modes of rock samples under different inclination angles β of structural plane. The stiffness of rock sample before peak strength changes in the compressive procedure. With the increase of β, the compressive strength σc of rock sample decreases firstly and then increases; when β is in the range of 20°-30° and 80°-90°, σc has the largest sensitivity to r; while β falls in the range of 30°-70°, σc varies little. When φj〈β〈90° ( φj is friction angle of structure plane), the results obtained from numerical simulation and theoretical analysis are in almost the same values; while β〈 φj or β=90°, they are in great different values. The results obtained from theoretical analysis are obvious larger than those from numerical simulation; and the results from numerical simulation can reflect the difference of compressive strength of rock samples for the two situations of β≥φj and β=90°, which is in more accordance with the real situation.
基金Projects(10472130,41202225) supported by the National Natural Science Foundation of China
文摘In order to study the strength failure and crack coalescence characteristics of cracked rocks, uniaxial compression experiments were conducted on cylindrical sandstone specimens, sampled from Longyou Grottoes of Zhejiang Province, China, with a single pre-cut crack soaking in different chemical solutions. Based on the results of uniaxial compressive test under different chemical solutions and velocities of flow, the effect of strength and deformation characteristics and main modes of crack coalescence for cracked rocks under chemical corrosion were analyzed. The results show that the pH value and velocity of the chemical solutions both have great influence on the sandstone sample's uniaxial compressive strength and deformation characteristics. Cracked sandstone samples are tension-destructed under uniaxial compression, and the crack propagation directions are consistent with the loading direction. The phenomena of crack initiation, propagation and coalescence of sandstone are well observed. Four different crack types are identified based on the crack propagation mechanism by analyzing the ultimate failure modes of sandstone containing a single pre-cut fissure. The failure process of specimen in air is similar with the specimen under chemical solutions, however, the initial time of crack occuring in specimen under chemical solutions is generally earlier than that in the natural specimen, and the crack propagation and coalescence process of specimen under chemical solutions are longer than those of the natural specimen due to softening of structure of rock caused by hydro-chemical action. Immersion velocity of flow and chemical solutions does not have influence on the ultimate modes of crack coalescence.
基金supported by 2016 Hongik University Research Fund and the Convergence R&D program of MSIP/NST[Convergence Research-14-2-ETRI,Development of Internet of Things(IoT)-based Urban Underground Utility Monitoring and Management System]
文摘This paper proposes an empirical formula to estimate the shear strength of hydraulic expansion rockbolts.The field experimental results were obtained from eleven pullout tests to evaluate the results computed by the proposed formula.It was found that shear resistance of hydraulic expansion rockbolts significantly depends on the uniaxial compressive strength and elastic modulus of rock,with high correlation coefficients of 0.7651 and0.8587,respectively.The developed formula enables estimation of the maximum pullout load in an analytical process without pullout tests in the field.Conversely,due to the poor interlocking at the initial pullout load,the measured displacements were higher than the estimated ones.To reduce the interlocking effects between bolt and rock,we recommend preloading of 29.4 kN.Preload allows reducing the distance between the measured and estimated displacement and making two load-displacement curves practically identical with marginal differences of 1.1 to 1.5 mm at the maximum pullout load.
文摘The main objective of this study is to verify, through compression tests on different prisms, the vertical and horizontal deformability and the failure modes of the components of concrete blocks under compression. In this study two mortar mixes were tested, along with two types of prism, with and without the presence of a vertical joint. The conclusions were: the appearance of non-linearities of the masonry corresponds to an increase in the lateral strain due to extensive cracking of the material and a progressive increase in the Poisson ratio, the cracks in the three-block prisms built with the mortar type I were vertical, occurring symmetrically on both sides; the prisms built with mortar type II had, as a consequence of localized crushing, an association with vertical cracks due to the concentrations of stresses at some points, the presence of a vertical joint led to the appearance of separation cracks between the middle block and the vertical mortar joint, when the stress reached approximately 30% of the compressive strength of the set; the prisms with two whole blocks and one vertical joint (B) built with the mortars of mixes I and II had a compressive strength of the order of 42% and 66% of the prisms with three whole blocks (A), respectively.
基金This work was supported by the National Major Research Program of China (No. 2013CB932602), the Major Project of International Cooperation and Exchanges (No. 2012DFA50990), National Natural Science Foundation of China (NSFC) (Nos. 51232001, 51172022, 51372020, and 51002008), the Fundamental Research Funds for Central Universities, Program for New Century Excellent Talents in Universities, and the Program for Changjiang Scholars and Innovative Research Teams in Universities.
文摘ZnO nanomaterials have been shown to have novel applications in optoelectronics, energy harvesting and piezotronics, due to their coupled semiconducting and piezoelectric properties. Here a functional nanogenerator (FNG) based on ZnO nanowire arrays has been fabricated, which can be employed to detect vibration in both self-powered (SP) and external-powered (EP) modes. In SP mode, the vibration responses of the FNG can be measured through converting mechanical energy directly into an electrical signal. The FNG shows consistent alternating current responses (relative error 〈 0.37%) at regular frequencies from 1 to 15 Hz. In EP mode, the current responses of FNG are significantly enhanced via the piezotronic effect. Under a forward bias of 3 V, the sensor presented a sensitivity of 3700% and an accurate measurement (relative error 〈 0.91%) of vibration frequencies in the range 0.05-15 Hz. The results show that this type of functional nanogenerator sensor can detect vibration in both SP and EP modes according to the demands of the applications.