期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
聚类算法在四个超级单体强对流过程雷电预警中的应用
1
作者 黄毅 候玉芳 赵泽栖 《现代信息科技》 2024年第6期145-148,共4页
选取2020年5月3日邢台出现四个超级单体的强对流过程,以6分钟的间隔对三维闪电数据进行划分,使用DBSCAN聚类算法删除离散点,使用K-means聚类算法对三维闪电数据进行聚类分析。选取轮廓系数最大的K值,并与雷达回波拼图数据进行对比,识别... 选取2020年5月3日邢台出现四个超级单体的强对流过程,以6分钟的间隔对三维闪电数据进行划分,使用DBSCAN聚类算法删除离散点,使用K-means聚类算法对三维闪电数据进行聚类分析。选取轮廓系数最大的K值,并与雷达回波拼图数据进行对比,识别四个超级单体并计算聚类中心和聚类最大半径,使用趋势外推法对四个超级单体的运动轨迹进行预测。分析表明:DBSCAN聚类算法可以有效删除离散点,操作性强;四个超级单体的K-means算法聚类中心和30 dBZ以上的强回波区域一致性较好,可以获取聚类中心运动轨迹和聚类最大半径;使用临近三个时次数据进行趋势外推,MSE最小,该方法对雷电预警信号发布有参考价值。 展开更多
关键词 DBSCAN K-MEANS 三维闪电 强回波区 趋势外推法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部