二阶复线性微分方程的指数多项式完全正规解是研究复线性微分方程解的一个重要分支,也是研究复线性微分方程解的重大突破,诸如来自美国University of New Orleans的著名函数论专家Gary G. Gundersen和来自芬兰University of Eastern Fin...二阶复线性微分方程的指数多项式完全正规解是研究复线性微分方程解的一个重要分支,也是研究复线性微分方程解的重大突破,诸如来自美国University of New Orleans的著名函数论专家Gary G. Gundersen和来自芬兰University of Eastern Finland的Janne Heittokangas教授以及国内温智涛老师等学者长期对此问题进行研究探索。现主要阐述研究背景,然后进行系统的梳理与总结,最后提出一些研究重点以及未解决的重要问题。展开更多
Estimators are presented for the coefficients of the polynomial errors-in-variables (EV) model when replicated observations are taken at some experimental points. These estimators are shown to be strongly consistent u...Estimators are presented for the coefficients of the polynomial errors-in-variables (EV) model when replicated observations are taken at some experimental points. These estimators are shown to be strongly consistent under mild conditions.展开更多
文摘二阶复线性微分方程的指数多项式完全正规解是研究复线性微分方程解的一个重要分支,也是研究复线性微分方程解的重大突破,诸如来自美国University of New Orleans的著名函数论专家Gary G. Gundersen和来自芬兰University of Eastern Finland的Janne Heittokangas教授以及国内温智涛老师等学者长期对此问题进行研究探索。现主要阐述研究背景,然后进行系统的梳理与总结,最后提出一些研究重点以及未解决的重要问题。
基金This work was supported by the National Natural Science Foundation of China (Grant No.19631040).
文摘Estimators are presented for the coefficients of the polynomial errors-in-variables (EV) model when replicated observations are taken at some experimental points. These estimators are shown to be strongly consistent under mild conditions.