期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
基于Ansys的铝合金地铁座椅骨架有限元分析 被引量:6
1
作者 索雪峰 《科技信息》 2012年第3期177-178,共2页
首先用Ansys软件建立了铝合金地铁座椅的有限元模型,按标准规定对模型进行了加载,然后进行仿真分析,最后对座椅骨架的强度进行了校核。其结果表明应力值都小于材料的许用应力,且在安全范围之内。
关键词 地铁座椅:有限元分析:结构强度 焊缝强度
下载PDF
汽轮机末叶片叶根强度分析与优化 被引量:6
2
作者 任涛 韩方亮 +3 位作者 王坤 胡利民 黄树红 胡少文 《汽轮机技术》 北大核心 2012年第4期267-272,共6页
针对某"215mm"汽轮机封口末叶片,应用有限元方法对其强度进行分析,对有限元计算的结果进行了验证,结合分析结果,对其结构进行了优化,并对不同的优化方案进行了对比,提出了结构优化的最佳方案。
关键词 汽轮机叶片 强度分析:有限元
下载PDF
Application of the Sub-Model Method in the Engine Strength Analysis 被引量:9
3
作者 邹文胜 左正兴 +1 位作者 冯慧华 廖日东 《Journal of Beijing Institute of Technology》 EI CAS 2001年第3期260-265,共6页
On the basis of introducing the fundamental theory and the basic analysis steps of the sub model method, the strength of the new engine complex assembly structure was analyzed according to the properties of the engin... On the basis of introducing the fundamental theory and the basic analysis steps of the sub model method, the strength of the new engine complex assembly structure was analyzed according to the properties of the engine structures, some of the key parts of the engine were analyzed with refined mesh by sub model method and the error of the FEM solution was estimated by the extrapolation method. The example showed that the sub model can not only analyze the comlex structures without the restriction of the software and hardware of the computers, but get the more precise analysis result also. This method is more suitable for the strength analysis of the complex assembly structure. 展开更多
关键词 sub model method ENGINE strength analysis FEM
下载PDF
Study on the FEM design of reinforced earth retaining wall with geogrid 被引量:4
4
作者 Song Yakun Zheng Yingren +1 位作者 Tang Xiaosong Zhang Yufang 《Engineering Sciences》 EI 2010年第3期71-80,共10页
At present,limit equilibrium method is often adopted in the design of reinforced earth retaining wall. Geotechnical engineers home and abroad have done a lot of work to improve the traditional calculation methods in r... At present,limit equilibrium method is often adopted in the design of reinforced earth retaining wall. Geotechnical engineers home and abroad have done a lot of work to improve the traditional calculation methods in recent years,while there are lots of defects. This paper first identifies the location of failure surface and safety factor through the finite element program of PLAXIS and then analyses the influencing factors of the stability of reinforced earth retaining wall with geogrid. The authors adopt strength reduction FEM (finite element method)in the design and stability analysis of reinforced earth retaining wall and have achieved some satisfying results. Without any assumptions,the new design method can automatically judge the failure mode of reinforced earth retaining wall,consider the influence of axial tensile stiffness of the reinforcement stripe on the stability of retaining wall,identify reasonable distance and length of the reinforcement stripe,and choose suitable parameters of reinforcement stripe,including strength,stiffness and pseudo-friction coefficient which makes the design optimal. It is proved through the calculation examples that this method is more reasonable,reliable and economical in the design of reinforced earth retaining wall. 展开更多
关键词 FEM strength reduction methods earth retaining walls optimization design
下载PDF
Wave load computation in direct strength analysis of semi-submersible platform structures 被引量:7
5
作者 ZHANGHai-bin RENHui-long DAIYang-shan GEFei 《Journal of Marine Science and Application》 2004年第1期7-13,共7页
A wave load computation approach in direct strength analysis of semi-submersible platform structures was presented in this paper. Considering the differences in shape of pontoon, column and beam, the combination of ac... A wave load computation approach in direct strength analysis of semi-submersible platform structures was presented in this paper. Considering the differences in shape of pontoon, column and beam, the combination of accumulative chord length cubic parameter spline theory and analytic method was adopted for generating the wet surface mesh of platform. The hydrodynamic coefficients of platform were calculated by the three-dimensional potential flow theory of the linear hydrodynamic problem for platform with low forward speed. The equation of platform motions was established and solved in frequency domain, and the responses of wave-induced loads on the platform can be obtained. With the interpolation method being utilized, the pressure loads on shell elements for finite element analysis (FEA) were converted from those on the hydrodynamic computation mesh, which pave the basis for FEA with commercial software.A computer program based on this method has been developed, and a calculation example of semi-submersible platform was illustrated.Analysis results show that this method is a satisfying approach of wave loads computation for this kind of platform. 展开更多
关键词 semi-submersible platform wave loads mesh-generating direct strength analysis
下载PDF
Design of an Experimental Set‑up Concerning Interfacial Stress to Promote Measurement Accuracy of Adhesive Shear Strength Between Ice and Substrate 被引量:2
6
作者 WANG Yusong HAN Liang +2 位作者 ZHU Chunling ZHU Chengxiang LIU Zhenguo 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2022年第5期561-568,共8页
Accumulation of ice on airfoils and engines seriously endangers the safety of the fight.The accurate measurement of adhesion strength at the ice-substrate interface plays a vital role in the design of anti/de-icing sy... Accumulation of ice on airfoils and engines seriously endangers the safety of the fight.The accurate measurement of adhesion strength at the ice-substrate interface plays a vital role in the design of anti/de-icing systems.In this pursuit,the present study envisages the evaluation of the stress at the icesubstrate interface to guide the design of experimental set-ups and improve the measurement accuracy of shear strength using the finite element analysis(FEA)method.By considering such factors as the peeling stress,maximum von-mises stress and uniformity of stress,the height and radius of ice and the loading height are investigated.Based on the simulation results,appropriate parameters are selected for the experimental validation.Simulation results show that the peeling stress is decreased by reducing the loading height and increasing the height of ice.Higher ice,increasing loading height and smaller ice radius are found to be beneficial for the uniformity of stress.To avoid cracks or ice-breaking,it is imperative that the ice should be of a small radius and greater height.Parameters including the ice height of 25 mm,radius of 20 mm,and loading height of 9 mm are adopted in the experiment.The results of FEA and the experimental validation can significantly enhance the measurement accuracy of shear strength. 展开更多
关键词 aircraft de-icing adhesive shear strength finite element analysis(FEA) experimental set-up interfacial stress
下载PDF
Stress distributions on crown-luting cement-substrate system with finite element method 被引量:1
7
作者 S.SEN M.S.GULER C.GULER 《Journal of Central South University》 SCIE EI CAS 2012年第8期2115-2124,共10页
The aim of this work is to analyze the stress distributions on a crown-luting cement-substrate system with a finite-element method in order to predict the likelihood of interfacial micro cracks, radial or circumferent... The aim of this work is to analyze the stress distributions on a crown-luting cement-substrate system with a finite-element method in order to predict the likelihood of interfacial micro cracks, radial or circumferential cracks, delamination, fracture and delamination with torsion. The contact and layer interface stresses in elastic layered half-space indented by an elastic sphere were examined using finite element method. The model consists of crown, luting cement and substrate. The solutions were carried out for three different elastic moduli of luting cement. It was placed between the cement and the substrate as a middle layer and its elastic module was chosen lower than the elastic module of crown and higher than the elastic module of dentin. An axisymmetric finite element mesh was set up for the stress analysis. Stress distributions on the contact surface and the interfaces of crown-luting cement and luting cement-dentin have been investigated for three different values of luting cement by using ANSYS. The effects of the luting cement which has three different elastic moduli on the pressure distribution and the location of interfacial stresses of the multi-layer model have been examined. The mechanism of crack initiation in the interfaces and interracial delamination was also studied quantitatively. For each luting cement, the pressure distribution is similar at the contact zone. Stress discontinuities occur at the perfect bonding interfaces of the crown-luting cement and the substrate-luting cement. The maximum stress jumps are obtained for the highest and the lowest elastic module of the luting cement. In the crown-luting cement-substrate system, failures may initiate at crown-luting cement region for luting cement with the lowest elastic module value. In addition, failures at luting cement-substrate region may occur for luting cement with the highest elastic module. In the luting cement, the medium elastic module value is more suitable for stress distribution in crown-luting cement-substrate interfaces. 展开更多
关键词 finite element modeling stress analysis adhesive and luting cement elastic deformation plastic deformation
下载PDF
Research on the stability analysis and design of soil tunnel surrounding rock 被引量:2
8
作者 Zheng Yingren Qiu Chenyu Xiao Qiang 《Engineering Sciences》 EI 2010年第3期57-70,共14页
The paper first analyzes the failure mechanism and mode of tunnel according to model experiments and mechanical calculation and then discusses the deficiency of taking the limit value of displacement around the tunnel... The paper first analyzes the failure mechanism and mode of tunnel according to model experiments and mechanical calculation and then discusses the deficiency of taking the limit value of displacement around the tunnel and the size of the plastic zone of surrounding rock as the criterion of stability. So the writers put forward the idea that the safety factor of surrounding rock calculated through strength reduction FEM(finit element method) should be regarded as the criterion of stability,which has strict mechanical basis and unified standard and would not be influenced by other factors. The paper also studies the safety factors of tunnel surrounding rock (safety factors of shear and tension failure) and lining and some methods of designing and calculating tunnels. At last,the writers take the loess tunnel for instance and show the design and calculation results of two-lane railway tunnel. 展开更多
关键词 stability of tunnel surrounding rock strength reduction FEM safety factor of shear safety factor of tension failure design method of tunnel
下载PDF
Microstructure and mechanical behavior of Ti/Cu/Ti laminated composites produced by corrugated and flat rolling 被引量:2
9
作者 Zhu-bo LIU Xin-yue WANG +4 位作者 Ming-shuo LIU Yuan-ming LIU Jiang-lin LIU A.V.IGNATOV Tao WANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第8期2598-2608,共11页
Ti/Cu/Ti laminated composites were fabricated by corrugated rolling(CR) and flat rolling(FR) method.Microstructure and mechanical properties of CR and FR laminated composites were investigated by scanning electron mic... Ti/Cu/Ti laminated composites were fabricated by corrugated rolling(CR) and flat rolling(FR) method.Microstructure and mechanical properties of CR and FR laminated composites were investigated by scanning electron microscopy, numerical simulation methods, peel and tensile examinations. The effect of CR and FR was comparatively analyzed. The results showed that the CR and FR laminated composites exhibited different effective plastic strain distributions of the Ti layer and Cu layer at the interface. The recrystallization texture, prismatic texture and pyramidal texture were developed in the Ti layer by CR, while the R-Goss texture and shear texture were developed in the Cu layer by CR. The typical deformation texture components were developed in the Ti layer and Cu layer of FR laminated composites. The CR laminated composites had higher bond strength, tensile strength and ductility. 展开更多
关键词 Ti/Cu/Ti laminated composites corrugated rolling flat rolling bond strength interfacial microstructure finite element analysis
下载PDF
2D Finite Element Computer Analysis of Strength for Brazed Joint of Cemented Carbide and Silver Brazing Filler Metal 被引量:1
10
作者 Meribe Richard Chukwuma Kazuya MORI +3 位作者 Kento Takenouchi Yuki Fijishita Takeshi Eguchi Kazufumi Sakata 《Journal of Mechanics Engineering and Automation》 2016年第4期186-189,共4页
Brazing has a wide acceptance in industries and its simplicity in variety of application attracts more and more patronage. The strength of brazing joint determines the reliability of brazed engineering components. So ... Brazing has a wide acceptance in industries and its simplicity in variety of application attracts more and more patronage. The strength of brazing joint determines the reliability of brazed engineering components. So the need to ascertain the reliability or to predict its failure (without some destructive testing) becomes high even with a computer aided analysis using the Finite Element Analysis. Here, we have employed the services of FEA software, Abaqus CAE, as a tool for the computer calculation to investigate a joint case of cemented carbide brazed with silver-based filler metal. In this paper, 2D analysis has been adopted because the thickness of the material (in 2D) does not influence the final calculation results. We have applied constant loading and constant boundary condition to explore data from the elastic and plastic strain analysis through which we were able to predict the maximum joint strength with respect to the joint thickness. The pattern of the meshing was also significant. And the result could be transferable to a real-life field situation. The final results showed that there is an optimum thickness of the filler metal with the maximum strength which matches that obtained from experiment. 展开更多
关键词 Finite element analysis BRAZING cemented carbide alloy silver brazing.
下载PDF
Application of material strength reserve method to the stability analysis of earth dam of feilaixia multipurpose project
11
作者 姚惠芹 段亚辉 《Journal of Coal Science & Engineering(China)》 2006年第1期11-15,共5页
The material strength reserve method is practical in the study of the stability and failure mechanism of earth dam by analysing the development of failure zone of different shear strength parameters of the earth mass ... The material strength reserve method is practical in the study of the stability and failure mechanism of earth dam by analysing the development of failure zone of different shear strength parameters of the earth mass of the dam. The stability in the concrete dam and ensemble architecture has got general application while analysing. In combination with Feilaixia Multipurpose Project, application of this method to earth dam stability analysis was studied by plane Finite Element Method(FEM) for the first time. Through plane FEM, we can get the failure mechanism of earth dam and appraise to the security, for operating and managing put forward some reference suggestions. 展开更多
关键词 strength reserve method stability analysis earth dam FEM
下载PDF
Installation Strength Analysis of Subsea Flowline Jumpers
12
作者 Liping Sun Youwei Kang 《Journal of Marine Science and Application》 CSCD 2015年第3期316-326,共11页
A subsea flowline jumper (FJ) is a basic connected component for the wet oil tree, subsea pipeline and riser base, and it plays an irreplaceable role in the subsea production system. During the installation of FJ, c... A subsea flowline jumper (FJ) is a basic connected component for the wet oil tree, subsea pipeline and riser base, and it plays an irreplaceable role in the subsea production system. During the installation of FJ, collisions often happen between FJ and other equipment, which may cause serious damage. Besides, as the operating water depth increases, the demand for the installation equipments, such as the crane and winch, will increase. The research of deepwater FJ installation in China is still in the primary stage, thus an installation method for the deepwater FJ is proposed in this paper. Finite element models of a typical M-shaped FJ installation system are built to simulate the installation procedures. Analysis results show that the installation steps designed are feasible and valid for the deepwater FJ. In order to ensure the safety of the installation process, the collision-sensitive analysis for the FJ is conducted, and results show that it is necessary to set the pick up speed at a proper value, in order to avoid collision in the installation process. Besides, the mechanical characteristics of FJ during the installation are investigated under a range of environmental conditions and it is found that the maximum stress of the FJ always happens at its central position. The basic requirements for the installation equipment are also obtained through the analysis of the main installation steps. 展开更多
关键词 subsea flowline jumper installation analysis strength analysis subsea pipelines finite element model COLLISION
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部