A kind of W/DLC/W-S-C composite film was fabricated by magnetron sputtering method.Effects of WSx content on the structure and the adhesion of the composite films were investigated.In addition,tribological behavior of...A kind of W/DLC/W-S-C composite film was fabricated by magnetron sputtering method.Effects of WSx content on the structure and the adhesion of the composite films were investigated.In addition,tribological behavior of the composite films was studied in the conditions of the ambient air and N2 gas atmosphere by ball-on-disk tester.The results indicate that the composite films show dense and amorphous microstructure.The WCx and WSx compounds are found in amorphous diamond like carbon matrix in the top layers of W-S-C.A proper WSx content is beneficial for improving the adhesion of the composite films.In air atmosphere,the composite films with high C content have better wear resistance and the friction coefficients range from 0.15 to 0.25.In N2 condition,high WSx content is benefit for the wear resistance and the friction coefficients of the composite films range from 0.03 to 0.1.展开更多
The solution of surface displacement of an elliptical crack under compressive-shear loading was obtained by using the complex function method. The closing mode was established by analyzing the geometrical condition of...The solution of surface displacement of an elliptical crack under compressive-shear loading was obtained by using the complex function method. The closing mode was established by analyzing the geometrical condition of closing crack, and the corresponding critical stress was solved. The result corrects the traditional viewpoint, in which there exist only open or close states for an elliptical crack, and points out that the local closing is also one of crack states. Based on them, the effect of the closed crack on stress intensity factor was discussed in detail, and its rational formulae are put forward.展开更多
The uniaxial compression tests of cylinder standard specimens and different dimension cube specimens of No.13 coal seam of Jianxin Colliery were carried out using MTS, and the basic mechanics parameters of Jianxin Col...The uniaxial compression tests of cylinder standard specimens and different dimension cube specimens of No.13 coal seam of Jianxin Colliery were carried out using MTS, and the basic mechanics parameters of Jianxin Colliery 13 coal were studied. The dimension-form effect of uniaxial compression strength was analyzed. The exponent formula σc=6.928+130.269 8 exp(-0.105 95D)of dimension effect was fitted. While the side length of specimen reaches 80 mm, its unaxial strength tends to a stable value which is called to be the strength of coal mass. Studies indicates that since the cube specimen suffered more shake than the cylinder one during machining and processing and the stress is centralized at four corners of cube during compressive experiment, the coal strength of standard cylinder specimen is higher than that of cube one.展开更多
In this paper, numerical method is used als. A typical unit of masonry is selected to serve merical model of RVE is established with detailed to study the strain rate effect on masonry materias a representative volume...In this paper, numerical method is used als. A typical unit of masonry is selected to serve merical model of RVE is established with detailed to study the strain rate effect on masonry materias a representative volume element (RVE). Nudistinctive modeling of brick and mortar with their respective dynamic material properties obtained from laboratory tests. The behavior of brick and mortar are characterized by a dynamic damage model that accounts for rate-sensitive and pressuredependent properties of masonry materials. Dynamic loads of different loading rates are applied to RVE. The equivalent homogenized uniaxial compressive strength, threshold strain and elastic modulus in three directions of the masonry are derived from the simulated responses of the RVE. The strain rate effect on the masonry material with clay brick and mortar, such as the dynamic increase factor (DIF) of the ultimate strength and elastic modulus as a function of strain rate are derived from the numerical results.展开更多
In order to investigate the feasibility of monitoring the fatigue cracks in turbine blades using acoustic emission (AE) technique, the AE characteristics of fatigue crack growth were studied in the laboratory. And the...In order to investigate the feasibility of monitoring the fatigue cracks in turbine blades using acoustic emission (AE) technique, the AE characteristics of fatigue crack growth were studied in the laboratory. And the characteristics were compared with those of background noise received from a real hydraulic turbine unit. It is found that the AE parameters such as the energy and duration can qualitatively describe the fatigue state of the blades. The correlations of crack propagation rates and acoustic emission count rates vs stress intensity factor (SIF) range are also obtained. At the same time, for the specimens of 20SiMn under the given testing conditions, it is noted that the rise time and duration of events emitted from the fatigue process are lower than those from the background noise; amplitude range is 49-74 dB, which is lower than that of the noise (90-99 dB); frequency range of main energy of crack signals is higher than 60 kHz while that in the noise is lower than 55 kHz. Thus, it is possible to extract the useful crack signals from the noise through appropriate signal processing methods and to represent the crack status of blade materials by AE parameters. As a result, it is feasible to monitor the safety of runners using AE technique.展开更多
The problem of scattering of SH-wave by a circular cavity and an arbitrary beeline crack in right-angle plane was investigated using the methods of Green's function,complex variables and muti-polar coordinates.Fir...The problem of scattering of SH-wave by a circular cavity and an arbitrary beeline crack in right-angle plane was investigated using the methods of Green's function,complex variables and muti-polar coordinates.Firstly,we constructed a suitable Green's function,which is an essential solution to the displacement field for the elastic right-angle plane possessing a circular cavity while bearing out-of-plane harmonic line source load at arbitrary point.Secondly,based on the method of crack-division,integration for solution was established,then expressions of displacement and stress were obtained while crack and circular cavities were both in existence.Finally,the dynamic stress concentration factor around the circular cavity and the dynamic stress intensity factor at crack tip were discussed to the cases of different parameters in numerical examples.Calculation results show that the crack produces adverse engineering influence on both of the dynamic stress concentration factor and the dynamic stress intensity factor.展开更多
By considering the effect of hydraulic pressure filled in wing crack and the connected part of main crack on the stress intensity factor at wing crack tip, a new wing crack model exerted by hydraulic pressure and far ...By considering the effect of hydraulic pressure filled in wing crack and the connected part of main crack on the stress intensity factor at wing crack tip, a new wing crack model exerted by hydraulic pressure and far field stresses was proposed. By introducing the equivalent crack length lcq of wing crack, two terms make up the stress intensity factor K1 at wing crack tip: one is the component K(1) for a single isolated straight wing crack of length 2l subjected to hydraulic pressure in wing crack and far field stresses, and the other is the component K1^(2) due to the effective shear stress induced by the presence of the equivalent main crack. The FEM model of wing crack propagation subjected to hydraulic pressure and far field stresses was also established according to different side pressure coefficients and hydraulic pressures in crack. The result shows that a good agreement is found between theoretical model of wing crack proposed and finite element method (FEM). In theory, an unstable crack propagation is shown if there is high hydraulic pressure and lateral tension. The wing crack model proposed can provide references for studying on hydraulic fracturing in rock masses.展开更多
In this work, a novel numerical method is developed for simulating arbitrary crack growth in pipes with the idea of enriched shape functions which can represent the discontinuity independent of the mesh. The concept o...In this work, a novel numerical method is developed for simulating arbitrary crack growth in pipes with the idea of enriched shape functions which can represent the discontinuity independent of the mesh. The concept of the enriched shape functions is introduced into the continuum-based (CB) shell element. Due to the advantage of CB shell element, the shell thickness varia- tion and surface connection can be concerned during the deformation. The stress intensity factors of the crack in the CB shell element are calculated by using the 'equivalent domain integral' method for 3D arbitrary non-planar crack. The maximum en- ergy release rate is used as a propagation criterion. This method is proved able to capture arbitrary crack growth path in pipes which is independent of the element mesh. Numerical examples of different fracture patterns in pipes are presented here.展开更多
Thermally activated dislocation emission in high-temperature ferroelectric ceramics is investigated through an assumption of thermal stability and a novel analytical method. The stress intensity factor (SIF) arising f...Thermally activated dislocation emission in high-temperature ferroelectric ceramics is investigated through an assumption of thermal stability and a novel analytical method. The stress intensity factor (SIF) arising from domain switching is evaluated by using a Green's function method, and the critical applied electric field intensity factor (CAEFIF) for brittle fracture at room temperature is obtained. Besides, the lowest temperature for single dislocation emission before brittle fracture is also obtained by constructing an energy balance. The multi-scale analysis of facture toughness of the ferroelectric ceramics at high temperature is carried out. Through the analysis, the CAEFIF for crack extension is recalculated. The results show that the competition and interaction effects between dislocation emission and brittle fracture are very obvious. Besides, the higher critical activation temperature, the more columns of obstacles will be overcome. Additionally, the shielding effect arising from thermally activated dislocations is remarkable, thus, the brittle-ductile transition can promote the fracture toughness of high-temperature ferroelectric ceramics.展开更多
This paper discusses the factors influencing Chinese energy intensity from 1980 to 2003 based on adaptive weighting Divisia index method and the analyzing results are different in different phase. In period of 1980~1...This paper discusses the factors influencing Chinese energy intensity from 1980 to 2003 based on adaptive weighting Divisia index method and the analyzing results are different in different phase. In period of 1980~1990, both the structure factor and the technology factor effected positively Chinese energy intensity's fall but the former became inefficacy and even turned out to be negative in 1991~2001 meanwhile the later factor strengthened its function. After 2001, the two factors promoted Chinese energy intensity's rising together. The conclusion is given in the end.展开更多
We carried out direct numerical simulations of turbulent Rayleigh-Benard convection(RBC)with accounting for both the roughness and the external vibration over the Rayleigh number range 10^(7)≤Ra≤10^(11) and the vibr...We carried out direct numerical simulations of turbulent Rayleigh-Benard convection(RBC)with accounting for both the roughness and the external vibration over the Rayleigh number range 10^(7)≤Ra≤10^(11) and the vibration frequency range 0<ω<1400.The triangular rough elements are uniformly distributed over the top and bottom surfaces,and the vibration is applied in the horizontal direction.It is shown that under the combined action of roughness and horizontal vibration,with increasing the vibration frequency ω,the heat transfer is initially decreased a little and then greatly enhanced after ω exceeds the critical value.The physical reason for massive heat-transfer-enhancement is that high frequency vibration destabilizes thermal boundary layers(BL)over rough surfaces,triggers abundant emissions of thermal plumes,and strengthens the motion of large-scale circulation(LSC),which consequently thins the thickness of thermal BL and heightens the convective transport.In addition,it is shown that vibration-induced heat-transfer-enhancement can obviously affect the scaling behavior between the heat flux and the Rayleigh number,and the scaling exponent increases with increasing ω,whereas the influence of vibration on the scaling behavior between the intensity of LSC and Ra is very weak.展开更多
文摘A kind of W/DLC/W-S-C composite film was fabricated by magnetron sputtering method.Effects of WSx content on the structure and the adhesion of the composite films were investigated.In addition,tribological behavior of the composite films was studied in the conditions of the ambient air and N2 gas atmosphere by ball-on-disk tester.The results indicate that the composite films show dense and amorphous microstructure.The WCx and WSx compounds are found in amorphous diamond like carbon matrix in the top layers of W-S-C.A proper WSx content is beneficial for improving the adhesion of the composite films.In air atmosphere,the composite films with high C content have better wear resistance and the friction coefficients range from 0.15 to 0.25.In N2 condition,high WSx content is benefit for the wear resistance and the friction coefficients of the composite films range from 0.03 to 0.1.
文摘The solution of surface displacement of an elliptical crack under compressive-shear loading was obtained by using the complex function method. The closing mode was established by analyzing the geometrical condition of closing crack, and the corresponding critical stress was solved. The result corrects the traditional viewpoint, in which there exist only open or close states for an elliptical crack, and points out that the local closing is also one of crack states. Based on them, the effect of the closed crack on stress intensity factor was discussed in detail, and its rational formulae are put forward.
文摘The uniaxial compression tests of cylinder standard specimens and different dimension cube specimens of No.13 coal seam of Jianxin Colliery were carried out using MTS, and the basic mechanics parameters of Jianxin Colliery 13 coal were studied. The dimension-form effect of uniaxial compression strength was analyzed. The exponent formula σc=6.928+130.269 8 exp(-0.105 95D)of dimension effect was fitted. While the side length of specimen reaches 80 mm, its unaxial strength tends to a stable value which is called to be the strength of coal mass. Studies indicates that since the cube specimen suffered more shake than the cylinder one during machining and processing and the stress is centralized at four corners of cube during compressive experiment, the coal strength of standard cylinder specimen is higher than that of cube one.
基金Supported by Australia Research Council(No.DP0451966)
文摘In this paper, numerical method is used als. A typical unit of masonry is selected to serve merical model of RVE is established with detailed to study the strain rate effect on masonry materias a representative volume element (RVE). Nudistinctive modeling of brick and mortar with their respective dynamic material properties obtained from laboratory tests. The behavior of brick and mortar are characterized by a dynamic damage model that accounts for rate-sensitive and pressuredependent properties of masonry materials. Dynamic loads of different loading rates are applied to RVE. The equivalent homogenized uniaxial compressive strength, threshold strain and elastic modulus in three directions of the masonry are derived from the simulated responses of the RVE. The strain rate effect on the masonry material with clay brick and mortar, such as the dynamic increase factor (DIF) of the ultimate strength and elastic modulus as a function of strain rate are derived from the numerical results.
基金Project(50465002) supported by the National Natural Science Foundation of China
文摘In order to investigate the feasibility of monitoring the fatigue cracks in turbine blades using acoustic emission (AE) technique, the AE characteristics of fatigue crack growth were studied in the laboratory. And the characteristics were compared with those of background noise received from a real hydraulic turbine unit. It is found that the AE parameters such as the energy and duration can qualitatively describe the fatigue state of the blades. The correlations of crack propagation rates and acoustic emission count rates vs stress intensity factor (SIF) range are also obtained. At the same time, for the specimens of 20SiMn under the given testing conditions, it is noted that the rise time and duration of events emitted from the fatigue process are lower than those from the background noise; amplitude range is 49-74 dB, which is lower than that of the noise (90-99 dB); frequency range of main energy of crack signals is higher than 60 kHz while that in the noise is lower than 55 kHz. Thus, it is possible to extract the useful crack signals from the noise through appropriate signal processing methods and to represent the crack status of blade materials by AE parameters. As a result, it is feasible to monitor the safety of runners using AE technique.
文摘The problem of scattering of SH-wave by a circular cavity and an arbitrary beeline crack in right-angle plane was investigated using the methods of Green's function,complex variables and muti-polar coordinates.Firstly,we constructed a suitable Green's function,which is an essential solution to the displacement field for the elastic right-angle plane possessing a circular cavity while bearing out-of-plane harmonic line source load at arbitrary point.Secondly,based on the method of crack-division,integration for solution was established,then expressions of displacement and stress were obtained while crack and circular cavities were both in existence.Finally,the dynamic stress concentration factor around the circular cavity and the dynamic stress intensity factor at crack tip were discussed to the cases of different parameters in numerical examples.Calculation results show that the crack produces adverse engineering influence on both of the dynamic stress concentration factor and the dynamic stress intensity factor.
基金Projects(10972238,51074071,50974059)supported by the National Natural Science Foundation of ChinaProject(10JJ3007)supported by the Natural Science Foundation of Hunan Province,China+1 种基金Project(11C0539)supported by Scientific Research Fund of Hunan Provincial Education Department,ChinaProject(200905)supported by Open Research Fund of Hunan Provincial Key of Safe Mining Techniques of Coal Mines,China
文摘By considering the effect of hydraulic pressure filled in wing crack and the connected part of main crack on the stress intensity factor at wing crack tip, a new wing crack model exerted by hydraulic pressure and far field stresses was proposed. By introducing the equivalent crack length lcq of wing crack, two terms make up the stress intensity factor K1 at wing crack tip: one is the component K(1) for a single isolated straight wing crack of length 2l subjected to hydraulic pressure in wing crack and far field stresses, and the other is the component K1^(2) due to the effective shear stress induced by the presence of the equivalent main crack. The FEM model of wing crack propagation subjected to hydraulic pressure and far field stresses was also established according to different side pressure coefficients and hydraulic pressures in crack. The result shows that a good agreement is found between theoretical model of wing crack proposed and finite element method (FEM). In theory, an unstable crack propagation is shown if there is high hydraulic pressure and lateral tension. The wing crack model proposed can provide references for studying on hydraulic fracturing in rock masses.
基金supported by the National Natural Science Foundation of China (Grant No. 11011140335)
文摘In this work, a novel numerical method is developed for simulating arbitrary crack growth in pipes with the idea of enriched shape functions which can represent the discontinuity independent of the mesh. The concept of the enriched shape functions is introduced into the continuum-based (CB) shell element. Due to the advantage of CB shell element, the shell thickness varia- tion and surface connection can be concerned during the deformation. The stress intensity factors of the crack in the CB shell element are calculated by using the 'equivalent domain integral' method for 3D arbitrary non-planar crack. The maximum en- ergy release rate is used as a propagation criterion. This method is proved able to capture arbitrary crack growth path in pipes which is independent of the element mesh. Numerical examples of different fracture patterns in pipes are presented here.
基金Supported by the Ph.D. Programs Foundation of Ministry of Education of China under Grant No. 20123305120008, the Scientific Research Project of Department of Education of Zhejiang Province under Grant No. Y201223508, a Grant from the Impact and Safety of Coastal Engineering Initiative, a COE Program of Zhejiang Provincial Government at Ningbo University under Grant Nos. zj1117, zj1203, and zj1201 and the K.C. Wong Magana Fund
文摘Thermally activated dislocation emission in high-temperature ferroelectric ceramics is investigated through an assumption of thermal stability and a novel analytical method. The stress intensity factor (SIF) arising from domain switching is evaluated by using a Green's function method, and the critical applied electric field intensity factor (CAEFIF) for brittle fracture at room temperature is obtained. Besides, the lowest temperature for single dislocation emission before brittle fracture is also obtained by constructing an energy balance. The multi-scale analysis of facture toughness of the ferroelectric ceramics at high temperature is carried out. Through the analysis, the CAEFIF for crack extension is recalculated. The results show that the competition and interaction effects between dislocation emission and brittle fracture are very obvious. Besides, the higher critical activation temperature, the more columns of obstacles will be overcome. Additionally, the shielding effect arising from thermally activated dislocations is remarkable, thus, the brittle-ductile transition can promote the fracture toughness of high-temperature ferroelectric ceramics.
文摘This paper discusses the factors influencing Chinese energy intensity from 1980 to 2003 based on adaptive weighting Divisia index method and the analyzing results are different in different phase. In period of 1980~1990, both the structure factor and the technology factor effected positively Chinese energy intensity's fall but the former became inefficacy and even turned out to be negative in 1991~2001 meanwhile the later factor strengthened its function. After 2001, the two factors promoted Chinese energy intensity's rising together. The conclusion is given in the end.
基金supported by the National Natural Science Foundation of China(Grant Nos.11988102,92052201,91852202,H825204,and 11972220)the Program of Shanghai Academic Research Leader(Grant No.19XD1421400)+1 种基金Shanghai Science and Technology Program(Grant Nos.19JC1412802 and 20ZR14I9800)China Postdoctoral Science Foundation(Grant No.2020M681259).
文摘We carried out direct numerical simulations of turbulent Rayleigh-Benard convection(RBC)with accounting for both the roughness and the external vibration over the Rayleigh number range 10^(7)≤Ra≤10^(11) and the vibration frequency range 0<ω<1400.The triangular rough elements are uniformly distributed over the top and bottom surfaces,and the vibration is applied in the horizontal direction.It is shown that under the combined action of roughness and horizontal vibration,with increasing the vibration frequency ω,the heat transfer is initially decreased a little and then greatly enhanced after ω exceeds the critical value.The physical reason for massive heat-transfer-enhancement is that high frequency vibration destabilizes thermal boundary layers(BL)over rough surfaces,triggers abundant emissions of thermal plumes,and strengthens the motion of large-scale circulation(LSC),which consequently thins the thickness of thermal BL and heightens the convective transport.In addition,it is shown that vibration-induced heat-transfer-enhancement can obviously affect the scaling behavior between the heat flux and the Rayleigh number,and the scaling exponent increases with increasing ω,whereas the influence of vibration on the scaling behavior between the intensity of LSC and Ra is very weak.