The quench sensitivity of 6063 alloy was investigated via constructing time-temperature-property(TTP) curves by interrupted quenching technique and transmission electron microscopy(TEM) analysis.The results show t...The quench sensitivity of 6063 alloy was investigated via constructing time-temperature-property(TTP) curves by interrupted quenching technique and transmission electron microscopy(TEM) analysis.The results show that the quench sensitivity of 6063 alloy is lower than that of 6061 or 6082 alloy,and the critical temperature ranges from 300 to 410℃ with the nose temperature of about 360℃.From TEM analysis,heterogeneous precipitate β-Mg2Si is prior to nucleate on the(AlxFeySiz) dispersoids in the critical temperature range,and grows up most rapidly at the nose temperature of 360℃.The heterogeneous precipitation leads to a low concentration of solute,which consequently reduces the amount of the strengthening phase β'' after aging.In the large-scale industrial production of 6063 alloy,the cooling rate during quenching should be enhanced as high as possible in the quenching sensitive temperature range(410-300℃) to suppress the heterogeneous precipitation to get optimal mechanical properties,and it should be slowed down properly from the solution temperature to 410℃ and below 300℃ to reduce the residual stress.展开更多
A modified mixed strengthening model was proposed for describing the yield strength of particle reinforced aluminum matrix composites.The strengthening mechanisms of the composites were analyzed based on the microstru...A modified mixed strengthening model was proposed for describing the yield strength of particle reinforced aluminum matrix composites.The strengthening mechanisms of the composites were analyzed based on the microstructures and compression mechanical properties.The distribution uniformity of reinforcements and cooperation relationship among dislocation mechanisms were considered in the modified mixed strengthening model by introducing a distribution uniformity factor u and a cooperation coefficient fc,respectively.The results show that the modified mixed strengthening model can accurately describe the yield strengths of Al3Ti/2024Al composites with a relative deviation less than1.2%,which is much more accurate than other strengthening models.The modified mixed model can also be used to predict the yield strength of Al3Ti/2024Al composites with different fractions of reinforcements.展开更多
文摘The quench sensitivity of 6063 alloy was investigated via constructing time-temperature-property(TTP) curves by interrupted quenching technique and transmission electron microscopy(TEM) analysis.The results show that the quench sensitivity of 6063 alloy is lower than that of 6061 or 6082 alloy,and the critical temperature ranges from 300 to 410℃ with the nose temperature of about 360℃.From TEM analysis,heterogeneous precipitate β-Mg2Si is prior to nucleate on the(AlxFeySiz) dispersoids in the critical temperature range,and grows up most rapidly at the nose temperature of 360℃.The heterogeneous precipitation leads to a low concentration of solute,which consequently reduces the amount of the strengthening phase β'' after aging.In the large-scale industrial production of 6063 alloy,the cooling rate during quenching should be enhanced as high as possible in the quenching sensitive temperature range(410-300℃) to suppress the heterogeneous precipitation to get optimal mechanical properties,and it should be slowed down properly from the solution temperature to 410℃ and below 300℃ to reduce the residual stress.
基金Projects (51875121,51405100) supported by the National Natural Science Foundation of ChinaProjects (2014M551233,2017T100237) supported by the China Postdoctoral Science Foundation+2 种基金Project (ZR2017PA003) supported by the Natural Science Foundation of Shandong Province,ChinaProject (2017GGX202006) supported by the Plan of Key Research and Development of Shandong Province,ChinaProject (2016DXGJMS05) supported by the Plan of Science and Technology Development of Weihai,China
文摘A modified mixed strengthening model was proposed for describing the yield strength of particle reinforced aluminum matrix composites.The strengthening mechanisms of the composites were analyzed based on the microstructures and compression mechanical properties.The distribution uniformity of reinforcements and cooperation relationship among dislocation mechanisms were considered in the modified mixed strengthening model by introducing a distribution uniformity factor u and a cooperation coefficient fc,respectively.The results show that the modified mixed strengthening model can accurately describe the yield strengths of Al3Ti/2024Al composites with a relative deviation less than1.2%,which is much more accurate than other strengthening models.The modified mixed model can also be used to predict the yield strength of Al3Ti/2024Al composites with different fractions of reinforcements.