Hoek–Brown(HB)strength criterion can reflect rock’s inherent failure nature,so it is more suitable for analyzing the stability of rock slopes.However,the traditional limit equilibrium methods are at present only sui...Hoek–Brown(HB)strength criterion can reflect rock’s inherent failure nature,so it is more suitable for analyzing the stability of rock slopes.However,the traditional limit equilibrium methods are at present only suitable for analyzing the rock slope stability using the linear equivalent Mohr–Coulomb(EMC)strength parameters instead of the nonlinear HB strength criterion.Therefore,a new method derived to analyze directly the rock slope stability using the nonlinear HB strength criterion for arbitrary curve slip surface was described in the limit equilibrium framework.The current method was established based on certain assumptions concerning the stresses on the slip surface through amending the initial normal stressσ0 obtained without considering the effect of inter-slice forces,and it can satisfy all static equilibrium conditions of the sliding body,so the current method can obtain the reasonable and strict factor of safety(FOS)solutions.Compared with the results of other methods in some examples,the feasibility of the current method was verified.Meanwhile,the parametric analysis shows that the slope angleβhas an important influence on the difference of the results obtained using the nonlinear HB strength criterion and its linear EMC strength parameters.Forβ≤45°,both of the results are similar,showing the traditional limit equilibrium methods using the linear EMC strength parameters and the current method are all suitable to analyze rock slope stability,but forβ>60°,the differences of both the results are obvious,showing the actual slope stability state can not be reflected in the traditional limit equilibrium methods,and then the current method should be used.展开更多
To properly simulate hard rock with a high ratio of the uniaxial compressive strength to tensile strength(UCS/TS) and realistic strength-failure envelope,the rock deformation and mechanical characteristics were discus...To properly simulate hard rock with a high ratio of the uniaxial compressive strength to tensile strength(UCS/TS) and realistic strength-failure envelope,the rock deformation and mechanical characteristics were discussed in detail when the particle simulation method with the clump parallel-bond model(CPBM) was used to conduct a series of numerical experiments at the specimen scale.Meanwhile,the effects of the loading procedure and crack density on the mechanical behavior of a specimen,which was modeled by the particle simulation method with the CPBM,were investigated.The related numerical results have demonstrated that:1) The uniaxial compressive strength(UCS),tensile strength(TS) and elastic modulus are overestimated when the conventional loading procedure is used in the particle simulation method with the CPBM; 2) The elastic modulus,strength and UCS/TS decrease,while Poisson ratio increases with the increase of the crack density in the particle simulation method with the CPBM; 3) The particle simulation method with the CPBM can be used to reproduce a high value of UCS/TS(>10),as well as a high friction angle and reasonable cohesion strength; 4) As the confining pressure increases,both the peak strength of the simulated specimen and the number of microscopic cracks increase,but the ratio of tensile cracks number to shear cracks number decreases in the particle simulation method with the CPBM; 5) Compared with the conventional parallel-bond model,the CPBM can be used to reproduce more accurate results for simulating the rock deformation and mechanical characteristics.展开更多
Hydroxyapatite bioceramics is simulated by using finite element method (FEM). The influences of porosity, hole shape, angle of crack and other parameters on the ceramics are analyzed. The results show that with the ...Hydroxyapatite bioceramics is simulated by using finite element method (FEM). The influences of porosity, hole shape, angle of crack and other parameters on the ceramics are analyzed. The results show that with the increase of the angle between crack and horizontal direction, the stress intensity factor KⅠ decreases gradually, but stress intensity factor KⅡ increases at first and then it decreases. The value of KⅡ reaches maximum when the angle between crack and horizontal direction is 45°. KⅠ and KⅡ rise with the increase of porosity, and they are almost the same for the circular and hexagonal holes. For elliptical holes, KⅠ and KⅡ reach maximum when the long axis of ellipse is perpendicular to the loading direction and they reach minimum when the same axis is parallel to the loading direction. Moreover, with the increase of the angle between the long axis and loading direction, KⅠ and KⅡ increase gradually.展开更多
The purpose of this paper is to improve allocation of the number of bits without skipping the frame by accurately estimating the target bits in H. 264/AVC rate control. The scheme ImPoses an enhancement method of the ...The purpose of this paper is to improve allocation of the number of bits without skipping the frame by accurately estimating the target bits in H. 264/AVC rate control. The scheme ImPoses an enhancement method of the target frame rate based on H. 264/AVC bit allocation. The enhancement uses a frame complexion estimation to improve the existing Mean Absolute Difference (MAD) complexity measurement. Bit allocation to each frame is not just computed by target frame rote but also adjusted by a combined frame complexity measure. Using the statistical characteristic, the scheme obtains change of occurrence bit about QP to apply the bit amount by QP from the video characteristic and apply it in the estimated bit amount of the current frame. Simulation results show that the proposed rate eontrol scheme achieves time saving of mine than 99% over existing rate control algorithm. Nevertheless, Peak Signal-to-Noise Ration (PSNR) and bit rate were almost the same as the performances.展开更多
The continuum-based(CB)shell theory is combined with the extended finite element method(X-FEM)in this paper to model crack propagation in shells under static and dynamic situations.Both jump function and asymptotic cr...The continuum-based(CB)shell theory is combined with the extended finite element method(X-FEM)in this paper to model crack propagation in shells under static and dynamic situations.Both jump function and asymptotic crack tip solution are adopted for describing the discontinuity and singularity of the crack in shells.Level set method(LSM)is used to represent the crack surface and define the enriched shape functions.Stress intensity factors(SIFs)are calculated by the displacement interpolation technique to prove the capability of the method and the maximum strain is applied for the fracture criterion.Also,an efficient integration scheme for the CB shell element with cracks is proposed.展开更多
基金Project(2015M580702)supported by China Postdoctoral Science FoundationProject(51608541)supported by the National Natural Science Foundation of ChinaProject(2014122066)supported by the Guizhou Provincial Department of Transportation Foundation,China
文摘Hoek–Brown(HB)strength criterion can reflect rock’s inherent failure nature,so it is more suitable for analyzing the stability of rock slopes.However,the traditional limit equilibrium methods are at present only suitable for analyzing the rock slope stability using the linear equivalent Mohr–Coulomb(EMC)strength parameters instead of the nonlinear HB strength criterion.Therefore,a new method derived to analyze directly the rock slope stability using the nonlinear HB strength criterion for arbitrary curve slip surface was described in the limit equilibrium framework.The current method was established based on certain assumptions concerning the stresses on the slip surface through amending the initial normal stressσ0 obtained without considering the effect of inter-slice forces,and it can satisfy all static equilibrium conditions of the sliding body,so the current method can obtain the reasonable and strict factor of safety(FOS)solutions.Compared with the results of other methods in some examples,the feasibility of the current method was verified.Meanwhile,the parametric analysis shows that the slope angleβhas an important influence on the difference of the results obtained using the nonlinear HB strength criterion and its linear EMC strength parameters.Forβ≤45°,both of the results are similar,showing the traditional limit equilibrium methods using the linear EMC strength parameters and the current method are all suitable to analyze rock slope stability,but forβ>60°,the differences of both the results are obvious,showing the actual slope stability state can not be reflected in the traditional limit equilibrium methods,and then the current method should be used.
基金Project(11272359) supported by the National Natural Science Foundation of China
文摘To properly simulate hard rock with a high ratio of the uniaxial compressive strength to tensile strength(UCS/TS) and realistic strength-failure envelope,the rock deformation and mechanical characteristics were discussed in detail when the particle simulation method with the clump parallel-bond model(CPBM) was used to conduct a series of numerical experiments at the specimen scale.Meanwhile,the effects of the loading procedure and crack density on the mechanical behavior of a specimen,which was modeled by the particle simulation method with the CPBM,were investigated.The related numerical results have demonstrated that:1) The uniaxial compressive strength(UCS),tensile strength(TS) and elastic modulus are overestimated when the conventional loading procedure is used in the particle simulation method with the CPBM; 2) The elastic modulus,strength and UCS/TS decrease,while Poisson ratio increases with the increase of the crack density in the particle simulation method with the CPBM; 3) The particle simulation method with the CPBM can be used to reproduce a high value of UCS/TS(>10),as well as a high friction angle and reasonable cohesion strength; 4) As the confining pressure increases,both the peak strength of the simulated specimen and the number of microscopic cracks increase,but the ratio of tensile cracks number to shear cracks number decreases in the particle simulation method with the CPBM; 5) Compared with the conventional parallel-bond model,the CPBM can be used to reproduce more accurate results for simulating the rock deformation and mechanical characteristics.
基金Supported by National Natural Science Foundation of China (No.10772133 and No.11072172)Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20090032110006)
文摘Hydroxyapatite bioceramics is simulated by using finite element method (FEM). The influences of porosity, hole shape, angle of crack and other parameters on the ceramics are analyzed. The results show that with the increase of the angle between crack and horizontal direction, the stress intensity factor KⅠ decreases gradually, but stress intensity factor KⅡ increases at first and then it decreases. The value of KⅡ reaches maximum when the angle between crack and horizontal direction is 45°. KⅠ and KⅡ rise with the increase of porosity, and they are almost the same for the circular and hexagonal holes. For elliptical holes, KⅠ and KⅡ reach maximum when the long axis of ellipse is perpendicular to the loading direction and they reach minimum when the same axis is parallel to the loading direction. Moreover, with the increase of the angle between the long axis and loading direction, KⅠ and KⅡ increase gradually.
文摘The purpose of this paper is to improve allocation of the number of bits without skipping the frame by accurately estimating the target bits in H. 264/AVC rate control. The scheme ImPoses an enhancement method of the target frame rate based on H. 264/AVC bit allocation. The enhancement uses a frame complexion estimation to improve the existing Mean Absolute Difference (MAD) complexity measurement. Bit allocation to each frame is not just computed by target frame rote but also adjusted by a combined frame complexity measure. Using the statistical characteristic, the scheme obtains change of occurrence bit about QP to apply the bit amount by QP from the video characteristic and apply it in the estimated bit amount of the current frame. Simulation results show that the proposed rate eontrol scheme achieves time saving of mine than 99% over existing rate control algorithm. Nevertheless, Peak Signal-to-Noise Ration (PSNR) and bit rate were almost the same as the performances.
基金supported by the National Natural Science Foundation of China(Grant No.11372157)
文摘The continuum-based(CB)shell theory is combined with the extended finite element method(X-FEM)in this paper to model crack propagation in shells under static and dynamic situations.Both jump function and asymptotic crack tip solution are adopted for describing the discontinuity and singularity of the crack in shells.Level set method(LSM)is used to represent the crack surface and define the enriched shape functions.Stress intensity factors(SIFs)are calculated by the displacement interpolation technique to prove the capability of the method and the maximum strain is applied for the fracture criterion.Also,an efficient integration scheme for the CB shell element with cracks is proposed.