Based on the Karma model and the Eggleston regularization technique of the strong interfacial energy anisotropy, a phase-field model was established for HCP materials. An explicit finite difference numerical method wa...Based on the Karma model and the Eggleston regularization technique of the strong interfacial energy anisotropy, a phase-field model was established for HCP materials. An explicit finite difference numerical method was used to solve phase field model and simulate the dendrite growth behaviors of HCP materials. Results indicate that the dendrite morphology presents obvious six-fold symmetry, and discontinuity in the variation of interface orientation occurs, resulting in a fact that the corners were formed at the tips of the main stem and side branches. When the interfacial energy anisotropy strength is lower than the critical value(1/35), the steady-state tip velocity of dendrite increases with anisotropy as expected. As the anisotropy strength crosses the critical value, the steady-state tip velocity drops down by about 0.89%. With further increase in anisotropy strength, the steady-state tip velocity increases and reaches the maximum value at anisotropy strength of 0.04, then decreases.展开更多
Anisotropic strength and deformability of the rock mass with non-persistent joints are governed by cracking process of the rock bridges. The dependence of cracking process of jointed rock masses on the two important g...Anisotropic strength and deformability of the rock mass with non-persistent joints are governed by cracking process of the rock bridges. The dependence of cracking process of jointed rock masses on the two important geometrical parameters, joint orientation and joint persistence, was studied systematically by carrying out a series of uniaxial compression tests on gypsum specimens with regularly arranged multiple parallel pre-existing joints. According to crack position, mechanism and temporal sequence, seven types of crack initiations and sixteen types of crack coalescences, were identified. It was observed that both tensile cracks and shear cracks can emanate from the pre-existing joints as well as the matrix. Vertical joints were included and coplanar tensile cracks initiation and coalescence were observed accordingly. For specimen with joint inclination angle ,8=75~, it was found that collinear joints can be linked not only by coplanar shear cracks but also by mixed tensile-shear cracks, and that a pair of them can form a small rotation block. Seven failure modes, including axial cleavage, crushing, crushing and rotation of new blocks, stepped failure, stepped failure and rotation of new blocks, shear failure along a single plane and shear failure along multiple planes, were observed. These modes shift gradually in accordance with the combined variation of joint orientation and joint persistence. It is concluded that cracking process and failure modes are more strongly affected by joint orientation than by joint persistence, especially when joint inclination angle is larger than 45~. Finally, variations of macroscopic mechanical behaviors with the two geometrical parameters, such as patterns of the complete axial stress-axial strain curves, peak strength and elastic modulus, are summarized and their mechanisms are successfully explained according to their different cracking process.展开更多
To clarify the influence of the deformation texture on the mechanical properties,pure Mo plates were processed by various cross rolling procedures,and the relation among texture,microstructure and mechanical propertie...To clarify the influence of the deformation texture on the mechanical properties,pure Mo plates were processed by various cross rolling procedures,and the relation among texture,microstructure and mechanical properties was discussed.The results show that cross rolling of the Mo plates is beneficial for the formation of the rotated cube component,i.e.,{001}<110>.The corresponding orientation density exhibits a positive correlation with the total rolling deformation and the current-pass deformation.When the total deformation is 96%or greater,the Mo plates form a texture orientation dominated by{001}<110>,whereas theγ-fibre texture becomes weaker and the cube texture{100}<100>disappears completely.The presence of{001}<110>has great effects on the properties of cross-rolled Mo plates,which is beneficial for strength enhancement and plasticity reduction in both the rolling direction(RD)and the transverse direction(TD).展开更多
The effect of electropulsing treatment on microstructure and mechanical strength of laser metal deposited Ti−6Al−4V alloy was investigated in order to eliminate the anisotropy in strength of laser metal deposited Ti−6...The effect of electropulsing treatment on microstructure and mechanical strength of laser metal deposited Ti−6Al−4V alloy was investigated in order to eliminate the anisotropy in strength of laser metal deposited Ti−6Al−4V alloy by tensile tests,optical microscopy,scanning electron microscopy,electron back-scattered diffraction analyses and transmission electron microscopy.With increasing applied voltages from 0 to 130 V,the evolution of microstructure within columnarβgrains followed the sequence ofα′martensite→colonyαstructure→basket-weaveαstructure.The electropulsing treated at 130 V weakened the texture of martensite withinβgrains.The as-built Ti−6Al−4V alloy showed an anisotropy in yield strength(6.2%).After processing at 130 V,the anisotropy in yield strength was reduced to 0.6%,which was attributed to the almost equivalent distribution of Schmid factor in the samples deformed along different orientations.展开更多
In order to identify the critical properties and failure criteria of in-situ silt under vehicle or wave loading, anisotropically consolidated silt under undrained cyclic principal stress rotation was studied with holl...In order to identify the critical properties and failure criteria of in-situ silt under vehicle or wave loading, anisotropically consolidated silt under undrained cyclic principal stress rotation was studied with hollow cylinder dynamic tests. The results show that for the slightly anisotropically consolidated samples with consolidation ratios no larger than 1.5, the structure collapses and the deviator strain and pore pressure increase sharply to fail after collapse. For the highly anisotropically consolidated samples with consolidation ratios larger than 1.5, the strain increases steadily to high values, which shows characteristics of ductile failure. 4% is suggested to be the threshold value of deviator stain to determine the occurrence of collapse. The normalized relationship between pore pressure and deviator strain can be correlated by a power fimction for all the anisotropically consolidated samples. Based on it, for the highly anisotropically consolidated samples, the appearance of inflection point on the power function curve is suggested to sign the failure. It can be predicted through the convex pore pressure at this point, whose ratio to the ultimate pore pressure is around linear with the consolidation ratio in spite of the dynamic shear stress level. And the corresponding deviator strain is between 3% and 6%. The strain failure criterion can also be adopted, but the limited value of stain should be determined according to engineering practice. As for the slightly anisotropically consolidated samples, the turning points appear after collapse. So, the failure is suggested to be defined with the occurrence of collapse and the collapse pore pressure can be predicted with the ultimate pore pressure and consolidation ratio.展开更多
Based on Rock Failure Process Analysis model RFPA2D, the evolutionary proc- esses of failure process of rock mass with multiple natural joints were simulated. Numeri- cal simulations show that anisotropy of compressiv...Based on Rock Failure Process Analysis model RFPA2D, the evolutionary proc- esses of failure process of rock mass with multiple natural joints were simulated. Numeri- cal simulations show that anisotropy of compressive strength of jointed rock mass varies with the number of natural joints and inclination of natural joints. As the number of natural joints in rock mass increases, the anisotropy becomes less and less. It is justifiable to treat approximately rock mass containing six or more natural joints instead of four or more joints that was described in literature of Hoek and Brown as isotropy.展开更多
This study presents the determination of the stress intensity factors (SIFs) at the edges of the cracks in an elastic strip weakened by N-collinear cracks. The problem of an orthotropic elastic strip is reduced to a...This study presents the determination of the stress intensity factors (SIFs) at the edges of the cracks in an elastic strip weakened by N-collinear cracks. The problem of an orthotropic elastic strip is reduced to a system of Cauchy type singular integral equations. The system of singular integral equations is approached by a Quadrature technique. Under two different loading conditions, the results are obtained for the different cases of crack numbers. The resistance of the strip is examined by considering the orthotropic properties of the strip material. Finally, the crack interactions are clarified during the analysis.展开更多
In order to clarify effects of prior pancaked austenitic structure on microstructure and mechanical properties of transformed martensite in ausformed steel,a super-thin pancaked austenite was processed by multi-pass r...In order to clarify effects of prior pancaked austenitic structure on microstructure and mechanical properties of transformed martensite in ausformed steel,a super-thin pancaked austenite was processed by multi-pass rolling in a 0.03-2.6Mn0.06Nb-0.01Ti(wt%) low alloy steel.The evolution of prior pancaked austenite grain during multi-pass rolling was studied using Ni-30Fe model alloy.Related with the structure and texture in the prior super-thin pancaked austenite in Ni-30Fe alloy,the texture and anisotropy of mechanical properties of transformed martensite in the studied ausformed steel were focused on.There were mainly three kinds of rolling texture components in the super-thin pancaked austenite:Goss {110} 001,copper {112} 111 and brass {110} 112.They were further transformed into the weak {001} 110 and strong {112} 110,{111} 112 texture components in the martensitic structure.The orientation relationship(OR) of lath martensite transformation from pancaked austenite in the ausformed steel deviated larger from the exact Kurdjumov-Sachs(K-S) OR than in the case of equiaxed austenite without deformation.The tensile and yield strengths of the ausformed martensitic steel first decreased and then increased as the angle between tension direction and rolling direction increased.The main reason for the anisotropy of strength was considered as the texture component {112} 110 in martensite.However,the anisotropy of impact toughness was more complex and the main reasons for it are unknown.展开更多
Magnetic single-domain islands based on in-plane anisotropy (usually, shape anisotropy) and their dipole-dipole interactions have been investigated extensively in recent years. This has been driven by potential appl...Magnetic single-domain islands based on in-plane anisotropy (usually, shape anisotropy) and their dipole-dipole interactions have been investigated extensively in recent years. This has been driven by potential applications in magnetic recording, spintronics, magneto-biology, etc. Here, we propose a concept of out- of-plane magnetic dusters with configurable domain structures (multi-flux states) via dipole-dipole interactions. Their flux stages can be switched through an external magnetic field. The concept has been successfully demonstrated by patterned [Co/Pd] islands. A [Co/Pd] multilayer exhibits a large perpendicular anisotropy, a strong physical separation, and uniform intrinsic properties after being patterned into individual islands by electron beam lithography. A three- island cluster with six stable flux states has been realized by optimizing island size, thickness, gap, anisotropy, saturation magnetization, etc. Using [Co/Pd] multilayers, we have optimized the island structure by tuning magnetic properties (saturation magnetization and perpendicular anisotropy) using Landau-Liftshitz- Gilbert (LLG) simulation/calculation. Potential applications have been proposed, including a flexi-programmable logic device with AND, OR, NAND, and NOR functionalities and a magnetic domino, which can propagate magnetic current as far as 1 μm down from the surface via vertical dipole-dipole interactions.展开更多
基金Project(10834015)supported by the National Natural Science Foundation of ChinaProject(12SKY01-1)supported by the Doctoral Fund of Shangluo University,China
文摘Based on the Karma model and the Eggleston regularization technique of the strong interfacial energy anisotropy, a phase-field model was established for HCP materials. An explicit finite difference numerical method was used to solve phase field model and simulate the dendrite growth behaviors of HCP materials. Results indicate that the dendrite morphology presents obvious six-fold symmetry, and discontinuity in the variation of interface orientation occurs, resulting in a fact that the corners were formed at the tips of the main stem and side branches. When the interfacial energy anisotropy strength is lower than the critical value(1/35), the steady-state tip velocity of dendrite increases with anisotropy as expected. As the anisotropy strength crosses the critical value, the steady-state tip velocity drops down by about 0.89%. With further increase in anisotropy strength, the steady-state tip velocity increases and reaches the maximum value at anisotropy strength of 0.04, then decreases.
基金Project(11102224)supported by the National Natural Science Foundation of ChinaProject(2009QL05)supported by the Fundamental Research Funds for the Central Universities of China
文摘Anisotropic strength and deformability of the rock mass with non-persistent joints are governed by cracking process of the rock bridges. The dependence of cracking process of jointed rock masses on the two important geometrical parameters, joint orientation and joint persistence, was studied systematically by carrying out a series of uniaxial compression tests on gypsum specimens with regularly arranged multiple parallel pre-existing joints. According to crack position, mechanism and temporal sequence, seven types of crack initiations and sixteen types of crack coalescences, were identified. It was observed that both tensile cracks and shear cracks can emanate from the pre-existing joints as well as the matrix. Vertical joints were included and coplanar tensile cracks initiation and coalescence were observed accordingly. For specimen with joint inclination angle ,8=75~, it was found that collinear joints can be linked not only by coplanar shear cracks but also by mixed tensile-shear cracks, and that a pair of them can form a small rotation block. Seven failure modes, including axial cleavage, crushing, crushing and rotation of new blocks, stepped failure, stepped failure and rotation of new blocks, shear failure along a single plane and shear failure along multiple planes, were observed. These modes shift gradually in accordance with the combined variation of joint orientation and joint persistence. It is concluded that cracking process and failure modes are more strongly affected by joint orientation than by joint persistence, especially when joint inclination angle is larger than 45~. Finally, variations of macroscopic mechanical behaviors with the two geometrical parameters, such as patterns of the complete axial stress-axial strain curves, peak strength and elastic modulus, are summarized and their mechanisms are successfully explained according to their different cracking process.
基金Project(2017YFB0306001)supported by the National Key R&D Program of ChinaProject(502221802)supported by the Innovation-Driven Project of Central South University,China。
文摘To clarify the influence of the deformation texture on the mechanical properties,pure Mo plates were processed by various cross rolling procedures,and the relation among texture,microstructure and mechanical properties was discussed.The results show that cross rolling of the Mo plates is beneficial for the formation of the rotated cube component,i.e.,{001}<110>.The corresponding orientation density exhibits a positive correlation with the total rolling deformation and the current-pass deformation.When the total deformation is 96%or greater,the Mo plates form a texture orientation dominated by{001}<110>,whereas theγ-fibre texture becomes weaker and the cube texture{100}<100>disappears completely.The presence of{001}<110>has great effects on the properties of cross-rolled Mo plates,which is beneficial for strength enhancement and plasticity reduction in both the rolling direction(RD)and the transverse direction(TD).
基金financial supports from the National Key R&D Program of China (No.2017YFE0123500)。
文摘The effect of electropulsing treatment on microstructure and mechanical strength of laser metal deposited Ti−6Al−4V alloy was investigated in order to eliminate the anisotropy in strength of laser metal deposited Ti−6Al−4V alloy by tensile tests,optical microscopy,scanning electron microscopy,electron back-scattered diffraction analyses and transmission electron microscopy.With increasing applied voltages from 0 to 130 V,the evolution of microstructure within columnarβgrains followed the sequence ofα′martensite→colonyαstructure→basket-weaveαstructure.The electropulsing treated at 130 V weakened the texture of martensite withinβgrains.The as-built Ti−6Al−4V alloy showed an anisotropy in yield strength(6.2%).After processing at 130 V,the anisotropy in yield strength was reduced to 0.6%,which was attributed to the almost equivalent distribution of Schmid factor in the samples deformed along different orientations.
基金Foundation item: Project(50909039) supported by the National Natural Science Foundation of China Project(IRTl125) supported by Program for Changjiang Scholars and Innovative Team in University of China
文摘In order to identify the critical properties and failure criteria of in-situ silt under vehicle or wave loading, anisotropically consolidated silt under undrained cyclic principal stress rotation was studied with hollow cylinder dynamic tests. The results show that for the slightly anisotropically consolidated samples with consolidation ratios no larger than 1.5, the structure collapses and the deviator strain and pore pressure increase sharply to fail after collapse. For the highly anisotropically consolidated samples with consolidation ratios larger than 1.5, the strain increases steadily to high values, which shows characteristics of ductile failure. 4% is suggested to be the threshold value of deviator stain to determine the occurrence of collapse. The normalized relationship between pore pressure and deviator strain can be correlated by a power fimction for all the anisotropically consolidated samples. Based on it, for the highly anisotropically consolidated samples, the appearance of inflection point on the power function curve is suggested to sign the failure. It can be predicted through the convex pore pressure at this point, whose ratio to the ultimate pore pressure is around linear with the consolidation ratio in spite of the dynamic shear stress level. And the corresponding deviator strain is between 3% and 6%. The strain failure criterion can also be adopted, but the limited value of stain should be determined according to engineering practice. As for the slightly anisotropically consolidated samples, the turning points appear after collapse. So, the failure is suggested to be defined with the occurrence of collapse and the collapse pore pressure can be predicted with the ultimate pore pressure and consolidation ratio.
基金Supported by the National 973 Planning Project(2007CB209404)the Doctoral Research Foundation of Dalian University(0302221)
文摘Based on Rock Failure Process Analysis model RFPA2D, the evolutionary proc- esses of failure process of rock mass with multiple natural joints were simulated. Numeri- cal simulations show that anisotropy of compressive strength of jointed rock mass varies with the number of natural joints and inclination of natural joints. As the number of natural joints in rock mass increases, the anisotropy becomes less and less. It is justifiable to treat approximately rock mass containing six or more natural joints instead of four or more joints that was described in literature of Hoek and Brown as isotropy.
文摘This study presents the determination of the stress intensity factors (SIFs) at the edges of the cracks in an elastic strip weakened by N-collinear cracks. The problem of an orthotropic elastic strip is reduced to a system of Cauchy type singular integral equations. The system of singular integral equations is approached by a Quadrature technique. Under two different loading conditions, the results are obtained for the different cases of crack numbers. The resistance of the strip is examined by considering the orthotropic properties of the strip material. Finally, the crack interactions are clarified during the analysis.
基金supported by the National Basic Research Program of China("973" Program) (Grant No. 2010CB630805)the National Natural Science Foundation of China (Grant No. 51071089 and 51171087)
文摘In order to clarify effects of prior pancaked austenitic structure on microstructure and mechanical properties of transformed martensite in ausformed steel,a super-thin pancaked austenite was processed by multi-pass rolling in a 0.03-2.6Mn0.06Nb-0.01Ti(wt%) low alloy steel.The evolution of prior pancaked austenite grain during multi-pass rolling was studied using Ni-30Fe model alloy.Related with the structure and texture in the prior super-thin pancaked austenite in Ni-30Fe alloy,the texture and anisotropy of mechanical properties of transformed martensite in the studied ausformed steel were focused on.There were mainly three kinds of rolling texture components in the super-thin pancaked austenite:Goss {110} 001,copper {112} 111 and brass {110} 112.They were further transformed into the weak {001} 110 and strong {112} 110,{111} 112 texture components in the martensitic structure.The orientation relationship(OR) of lath martensite transformation from pancaked austenite in the ausformed steel deviated larger from the exact Kurdjumov-Sachs(K-S) OR than in the case of equiaxed austenite without deformation.The tensile and yield strengths of the ausformed martensitic steel first decreased and then increased as the angle between tension direction and rolling direction increased.The main reason for the anisotropy of strength was considered as the texture component {112} 110 in martensite.However,the anisotropy of impact toughness was more complex and the main reasons for it are unknown.
文摘Magnetic single-domain islands based on in-plane anisotropy (usually, shape anisotropy) and their dipole-dipole interactions have been investigated extensively in recent years. This has been driven by potential applications in magnetic recording, spintronics, magneto-biology, etc. Here, we propose a concept of out- of-plane magnetic dusters with configurable domain structures (multi-flux states) via dipole-dipole interactions. Their flux stages can be switched through an external magnetic field. The concept has been successfully demonstrated by patterned [Co/Pd] islands. A [Co/Pd] multilayer exhibits a large perpendicular anisotropy, a strong physical separation, and uniform intrinsic properties after being patterned into individual islands by electron beam lithography. A three- island cluster with six stable flux states has been realized by optimizing island size, thickness, gap, anisotropy, saturation magnetization, etc. Using [Co/Pd] multilayers, we have optimized the island structure by tuning magnetic properties (saturation magnetization and perpendicular anisotropy) using Landau-Liftshitz- Gilbert (LLG) simulation/calculation. Potential applications have been proposed, including a flexi-programmable logic device with AND, OR, NAND, and NOR functionalities and a magnetic domino, which can propagate magnetic current as far as 1 μm down from the surface via vertical dipole-dipole interactions.