This paper reports investigation conducted to study the fatigue performance of steel fibre reinforced concrete (SFRC) containing fibres of mixed aspect ratio. An extensive experimental program was conducted in which 9...This paper reports investigation conducted to study the fatigue performance of steel fibre reinforced concrete (SFRC) containing fibres of mixed aspect ratio. An extensive experimental program was conducted in which 90 flexural fatigue tests were carried out at different stress levels on size 500 mm×100 mm×100 mm SFRC specimens respectively containing 1.0%, 1.5% and 2.0% volume fraction of fibres. About 36 static flexural tests were also conducted to determine the static flexural strength prior to fatigue testing. Each volume fraction of fibres incorporated corrugated mixed steel fibres of size 0.6 mm×2.0 mm×25 mm and 0.6 mm×2.0 mm×50 mm in ratio 50:50 by weight. The results are presented both as S-N relationships, with the maximum fatigue stress expressed as a percentage of the strength under static loading, and as relationships between actually applied fatigue stress and number of loading cycles to failure. Two-million-cycle fatigue strengths of SFRC containing different volume fractions of mixed fibres were obtained and compared with plain concrete.展开更多
The paper presents an improved technique of calculating total deflections of flexural reinforced concrete elements that takes discrete crack formation into account. The technique is based on determining the curvature ...The paper presents an improved technique of calculating total deflections of flexural reinforced concrete elements that takes discrete crack formation into account. The technique is based on determining the curvature of the cross section of reinforced concrete elements with cracks and fissures in the area between cracks. The curvature of the element is calculated using a non-linear function of the deformation of concrete under compression. Approximating dependency of concrete resistance on compression developed by one of the authors is presented. An algorithm of finding the curvature and formulas for calculating curvature and deflection are provided. The function of the curvature distribution along the length of a flexible element is proposed by the authors. The paper also presents the results of the author's experimental research. The characteristics of samples tested are described. The experimental research results of deflections of fiexural reinforced concrete elements made of conventional and high-strength concretes are presented. Comparison of the values calculated using the technique with those obtained from the experimental research as well as those calculated according to existing regulations in Russia, USA and Europe is drawn.展开更多
基金Project supported by the Indian Council for Cultural Relations,India
文摘This paper reports investigation conducted to study the fatigue performance of steel fibre reinforced concrete (SFRC) containing fibres of mixed aspect ratio. An extensive experimental program was conducted in which 90 flexural fatigue tests were carried out at different stress levels on size 500 mm×100 mm×100 mm SFRC specimens respectively containing 1.0%, 1.5% and 2.0% volume fraction of fibres. About 36 static flexural tests were also conducted to determine the static flexural strength prior to fatigue testing. Each volume fraction of fibres incorporated corrugated mixed steel fibres of size 0.6 mm×2.0 mm×25 mm and 0.6 mm×2.0 mm×50 mm in ratio 50:50 by weight. The results are presented both as S-N relationships, with the maximum fatigue stress expressed as a percentage of the strength under static loading, and as relationships between actually applied fatigue stress and number of loading cycles to failure. Two-million-cycle fatigue strengths of SFRC containing different volume fractions of mixed fibres were obtained and compared with plain concrete.
文摘The paper presents an improved technique of calculating total deflections of flexural reinforced concrete elements that takes discrete crack formation into account. The technique is based on determining the curvature of the cross section of reinforced concrete elements with cracks and fissures in the area between cracks. The curvature of the element is calculated using a non-linear function of the deformation of concrete under compression. Approximating dependency of concrete resistance on compression developed by one of the authors is presented. An algorithm of finding the curvature and formulas for calculating curvature and deflection are provided. The function of the curvature distribution along the length of a flexible element is proposed by the authors. The paper also presents the results of the author's experimental research. The characteristics of samples tested are described. The experimental research results of deflections of fiexural reinforced concrete elements made of conventional and high-strength concretes are presented. Comparison of the values calculated using the technique with those obtained from the experimental research as well as those calculated according to existing regulations in Russia, USA and Europe is drawn.