The influence of the confining potential strength and temperature on the structures and dynamics of a two-dimensional (2D) dusty plasma system is investigated through molecular dynamic (MD) simulation. The circular sy...The influence of the confining potential strength and temperature on the structures and dynamics of a two-dimensional (2D) dusty plasma system is investigated through molecular dynamic (MD) simulation. The circular symmetric confining potential leads to the nonuniform packing of particles, that is, an inner core with a hexagon lattice surrounded by a few outer circular shells. Under the appropriate confining potential and temperature, the particle trajectories on middle shells form a series of concentric and nested hexagons due to tangential movements of particles.Mean square displacement, self-diffusion constant, pair correlation function, and the nearest bond are used to characterize the structural and dynamical properties of the system. With the increase of the confining potential, the radial and tangential movements of particles have different behaviors. With the increase of temperature, the radial and tangential motions strengthen, particle trajectories gradually become disordered, and the system gradually changes from a crystal or liquid state to a gas state.展开更多
Background: Attention deficit hyperactivity disorder (ADHD) is a common childhood disorder that affects approximately 11% of children in the United States. Research supports that a single session of exercise benefi...Background: Attention deficit hyperactivity disorder (ADHD) is a common childhood disorder that affects approximately 11% of children in the United States. Research supports that a single session of exercise benefits cognitive performance by children, and a limited number of studies have demonstrated that these effects can also be realized by children with ADHD. The purpose of this study was to examine the effect of acute exercise on cognitive performance by children with and without ADHD. Methods: Children with and without ADHD were asked to perform cognitive tasks on 2 days following treatment conditions that were assigned in a random, counterbalanced order. The treatment conditions consisted of a 30-min control condition on 1 day and a moderate intensity exercise condition on the other day. Results: Exercise significantly benefited performance on all three conditions of the Stroop Task, but did not significantly affect performance on the Tower of London or the Trail Making Test. Conclusion: children with and without ADHD realize benefits in speed of processing and inhibitory control in response to a session of acute exercise, but do not experience benefits in planning or set shifting.展开更多
Low-carbon advanced nanostructured steels have been developed for various structural engineering applications, including bridges, automobiles, and other strength-critical applications such as the reactor pressure vess...Low-carbon advanced nanostructured steels have been developed for various structural engineering applications, including bridges, automobiles, and other strength-critical applications such as the reactor pressure vessels in nuclear power stations. The mechanical performances and applications of these steels are strongly dependent on their microstructural features. By controlling the size,number density, distribution, and types of precipitates, it is possible to produce nanostructured steels with a tensile strength reaching as high as 2 GPa while keeping a decent tensile elongation above 10% and a reduction of area as high as 40%. Besides, through a careful control of strength contributions from multiple strengthening mechanisms, the nanostructured steels with superior strengths and low-temperature impact toughness can be obtained by avoiding the temper embrittlement regime. With appropriate Mn additions, these nanostructured steels can achieve a triple enhancement in ductility(total tensile elongation, TE of ~30%) at no expense of strengths(yield strength, YS of ~1100 to 1300 MPa, ultimate tensile strength, UTS of ~1300 to 1400 MPa). More importantly, these steels demonstrate good fabricability and weldability. In this paper, the microstructure-property relationships of these advanced nanostructured steels are comprehensively reviewed. In addition, the current limitations and future development of these nanostructured steels are carefully discussed and outlined.展开更多
基金the National Natural Science Foundation of China under
文摘The influence of the confining potential strength and temperature on the structures and dynamics of a two-dimensional (2D) dusty plasma system is investigated through molecular dynamic (MD) simulation. The circular symmetric confining potential leads to the nonuniform packing of particles, that is, an inner core with a hexagon lattice surrounded by a few outer circular shells. Under the appropriate confining potential and temperature, the particle trajectories on middle shells form a series of concentric and nested hexagons due to tangential movements of particles.Mean square displacement, self-diffusion constant, pair correlation function, and the nearest bond are used to characterize the structural and dynamical properties of the system. With the increase of the confining potential, the radial and tangential movements of particles have different behaviors. With the increase of temperature, the radial and tangential motions strengthen, particle trajectories gradually become disordered, and the system gradually changes from a crystal or liquid state to a gas state.
文摘Background: Attention deficit hyperactivity disorder (ADHD) is a common childhood disorder that affects approximately 11% of children in the United States. Research supports that a single session of exercise benefits cognitive performance by children, and a limited number of studies have demonstrated that these effects can also be realized by children with ADHD. The purpose of this study was to examine the effect of acute exercise on cognitive performance by children with and without ADHD. Methods: Children with and without ADHD were asked to perform cognitive tasks on 2 days following treatment conditions that were assigned in a random, counterbalanced order. The treatment conditions consisted of a 30-min control condition on 1 day and a moderate intensity exercise condition on the other day. Results: Exercise significantly benefited performance on all three conditions of the Stroop Task, but did not significantly affect performance on the Tower of London or the Trail Making Test. Conclusion: children with and without ADHD realize benefits in speed of processing and inhibitory control in response to a session of acute exercise, but do not experience benefits in planning or set shifting.
基金supported by the National Natural Science Foundation of China (51801169)Hong Kong Research Grant Council (CityU Grant 9360161, 9042635, 9042879)the internal funding from the City University of Hong Kong (CityU 9380060)。
文摘Low-carbon advanced nanostructured steels have been developed for various structural engineering applications, including bridges, automobiles, and other strength-critical applications such as the reactor pressure vessels in nuclear power stations. The mechanical performances and applications of these steels are strongly dependent on their microstructural features. By controlling the size,number density, distribution, and types of precipitates, it is possible to produce nanostructured steels with a tensile strength reaching as high as 2 GPa while keeping a decent tensile elongation above 10% and a reduction of area as high as 40%. Besides, through a careful control of strength contributions from multiple strengthening mechanisms, the nanostructured steels with superior strengths and low-temperature impact toughness can be obtained by avoiding the temper embrittlement regime. With appropriate Mn additions, these nanostructured steels can achieve a triple enhancement in ductility(total tensile elongation, TE of ~30%) at no expense of strengths(yield strength, YS of ~1100 to 1300 MPa, ultimate tensile strength, UTS of ~1300 to 1400 MPa). More importantly, these steels demonstrate good fabricability and weldability. In this paper, the microstructure-property relationships of these advanced nanostructured steels are comprehensively reviewed. In addition, the current limitations and future development of these nanostructured steels are carefully discussed and outlined.