Coal pillar design has historically assigned a factor of safety(Fo S) or stability factor(SF) according to their estimated strength and the assumed overburden load acting on them. Acceptable Fo S values have been assi...Coal pillar design has historically assigned a factor of safety(Fo S) or stability factor(SF) according to their estimated strength and the assumed overburden load acting on them. Acceptable Fo S values have been assigned based on past mining experience or a statistical link between Fo S and probability of failure(Po F). Pillar width-to-height(w/h) ratio has long been established as having a material influence on both pillar strength and its potential failure mode. However, there has been significant disagreement on using both factor of safety(Fo S) and w/h as part of pillar system stability criterion, as compared to using Fo S in isolation. This paper will argue that there are valid technical reasons to bring w/h ratio into system stability criteria(other than its influence on pillar strength), as it is related to the post-failure stiffness of the pillar, as measured in situ, and its interaction with overburden stiffness. When overburden stiffness is also brought into pillar system stability considerations, two issues emerge. The first is the width-todepth(W/D) ratio of the panel and whether it is sub-critical or super-critical from a surface subsidence perspective. The second relates to a re-evaluation of pillar Fo S based on whether the pillar is in an elastic or non-elastic(i.e., post-yield) state in its as-designed condition, as this is relevant to maintaining overburden stiffness at the highest possible level. The significance of the model is the potential to maximise both reserve recovery and mining efficiencies without any discernible increase in geotechnical risk, particularly in thick seams and higher depth of cover mining situations. At a time when mining economics are, at best, marginal, removing potentially unnecessary design conservatism is of interest to all mine operators and is an important topic for discussion amongst the geotechnical community.展开更多
This paper describes a specific case of mining in a water-rich coal seam in western China. Water inrushes,roof caving and other disasters induced by intensive mining operation could pose great threats to the safety of...This paper describes a specific case of mining in a water-rich coal seam in western China. Water inrushes,roof caving and other disasters induced by intensive mining operation could pose great threats to the safety of coal mines. The strata behavior during the high-intensity extraction in the water-rich coal seam is analyzed by employing the numerical simulation method and in situ monitoring. The results show that about 10 m ahead of the workface, the front abutment pressure peaks is at 34.13 MPa, while the peak of the side abutment pressure is located about 8 m away from the gateway with the value of 12.41 MPa; the height of the fracture zone, the first weighting step and the cycle weighting step are calculated to be 45,50 and 20.8 m, respectively; pressure distribution in the workface is characterized by that the vertical pressure in the center occurs earlier and is stronger than those on both ends. Then, the results above are verified by in situ measurement, which may provide a basis for safe mining under similar conditions.展开更多
The application of a double-face reinforced retaining wall during road construction can reduce engineering costs, speed road paving and have a good influence on environment. An ABAQUS numerical model of a double-face ...The application of a double-face reinforced retaining wall during road construction can reduce engineering costs, speed road paving and have a good influence on environment. An ABAQUS numerical model of a double-face reinforced retaining wall was built. The influence of surface subsidence induced by mining was considered. A physical model test was also performed in the laboratory on a reinforced retaining wall. The influence of subsidence induced by mining was observed. The numerical results match measurements in the laboratory very well. The vertical pressure on the base of the retaining wall, the horizontal displacement of the wall and the horizontal soil pressure acting on the wall were analyzed. The differential settlement of the reinforced belt and axial forces in the wall were also studied.展开更多
Ground movement and deformation caused by underground mining would destroy the constructions located within subsidence area. Constructions would suffer different destructions with different location. The effect of gro...Ground movement and deformation caused by underground mining would destroy the constructions located within subsidence area. Constructions would suffer different destructions with different location. The effect of ground deformation caused by underground mining to constructions was analyzed. Analyzed the destructive types of constructions in different ground movement and deformation. Taking a two-storey building for example, the walls were reinforced by computation before mining. To protect the construction the reinforcement measures to the construction before mining were studied.展开更多
The stability of branched airflow of ventilation network is guarantee of safety in production of coal mine. Two indexes which stand for the stability of branches of ventilation network in coal mine were put forward in...The stability of branched airflow of ventilation network is guarantee of safety in production of coal mine. Two indexes which stand for the stability of branches of ventilation network in coal mine were put forward in this paper, that are airflow intensity and sta- bility index of branched airflow, The airflow stability of working place was divided into different grade according to the stability index. The conclusion has great significance for safety in production of coal mine.展开更多
As China's energy strategy moving westward, the surface movement and deformation characteristics due to high-intensive coal mining in the windy and sandy region become a research hotspot. Surface movement observation...As China's energy strategy moving westward, the surface movement and deformation characteristics due to high-intensive coal mining in the windy and sandy region become a research hotspot. Surface movement observation stations were established to monitor movement and deformation in one super-large working face. Based on field measurements, the surface movement and deformation characteristics were obtained, including angle parameters, subsidence prediction parameters, etc. Besides, the angle and subsidence prediction parameters in similar mining areas are summarized; the mechanism of surface movement and deformation was analyzed with the combination of key stratum theory, mining and geological conditions. The research also indicates that compared with conventional working faces, uniform subsidence area of the subsidence trough in the windy and sandy region is larger, the trough margins are relative steep and deformation values present convergence at the margins, the extent of the trough shrink towards the goaf and the influence time of mining activities lasts shorter; the overlying rock movement and breaking characteristics presents regional particularity in the study area, while the single key stratum, thin bedrock and thick sand that can rapidly propagate movement and deformation are the deep factors, contributing to it.展开更多
Rock bursts are spontaneous, violent fracture of rock that can occur in deep mines, and the likelihood of rock bursts occurring increases as depth of the mine increases. Rock bursts are also affected by the compressiv...Rock bursts are spontaneous, violent fracture of rock that can occur in deep mines, and the likelihood of rock bursts occurring increases as depth of the mine increases. Rock bursts are also affected by the compressive strength, tensile strength, tangential strength, elastic energy index, etc. of rock, and the relationship between these factors and rock bursts in deep mines is difficult to analyze from quantitative point. Typical rock burst instances as a sample set were collected, and membership function was introduced to process the discrete values of these factors with the discrete factors as condition attributes and rock burst situations as decision attributes. Dominance-based rough set theory was used to generate preference rules of rock burst, and eventually rock burst laws analysis in deep mines with preference relation was taken. The results show that this model for rock burst laws analysis in deep mines is more reasonable and feasible, and the prediction results are more scientific.展开更多
In this paper,the advantage of using numerical models with the strength reduction method(SRM) to evaluate entry stability in complex multiple-seam conditions is demonstrated.A coal mine under variable topography from ...In this paper,the advantage of using numerical models with the strength reduction method(SRM) to evaluate entry stability in complex multiple-seam conditions is demonstrated.A coal mine under variable topography from the Central Appalachian region is used as a case study.At this mine,unexpected roof conditions were encountered during development below previously mined panels.Stress mapping and observation of ground conditions were used to quantify the success of entry support systems in three room-and-pillar panels.Numerical model analyses were initially conducted to estimate the stresses induced by the multiple-seam mining at the locations of the affected entries.The SRM was used to quantify the stability factor of the supported roof of the entries at selected locations.The SRM-calculated stability factors were compared with observations made during the site visits,and the results demonstrate that the SRM adequately identifies the unexpected roof conditions in this complex case.It is concluded that the SRM can be used to effectively evaluate the likely success of roof supports and the stability condition of entries in coal mines.展开更多
This paper will present a detailed analysis of the deformation mechanism and stability assessment of the slope through field investigations, numerical modeling and measurements. Field investigation indicated that thre...This paper will present a detailed analysis of the deformation mechanism and stability assessment of the slope through field investigations, numerical modeling and measurements. Field investigation indicated that three thin coal seams encountered large mined-out area at one side and free surface of hill slope at the other side, which lead to the caving of roof strata movement, ground movement and crown crack along the preferred orientations of joints. The three-dimensional numeri- cal modeling study on the case demonstrated that the plasticity failure occurred gradually along with the extension of mined-out area in depth. When the depth of mining reached the verge defined by the seismic prospecting method, a large mount of tension failure occurred on the crown of the slope. The factor of safety was 1.36 calculated by the shear strength reduction technique, which indicated the slope was in stable state. The measurement showed that the residual deformation occurred before 1998 and became stable subsequently, which indicated that the residual deformation almost finished and the slope is in stable state.展开更多
In order to settle the mining optimization design and safety problem of the above 1 150 m pillar of No.1 ore-body in No.H Mining Jinchuan, the lean-ore above 1 250 m, the 1 150 m horizontal pillar and the ore-body bel...In order to settle the mining optimization design and safety problem of the above 1 150 m pillar of No.1 ore-body in No.H Mining Jinchuan, the lean-ore above 1 250 m, the 1 150 m horizontal pillar and the ore-body below 1 100 m regarded as research objects based on the original design project, and nine calculation schemes on different mining sequence and different fill body strength were put forward based on cement-sand ratio of 1 : 4, 1: 12 and 1 : 24. Calculation parameters were got by the back analysis method of field monitoring data, and the FLAC2D program was applied to compute for these schemes, stress and displacement of ground settlement, shaft and stope roof were analyzed, and some conclusions were got. Results show that the intensity of filling body and the mining technique have very important effect on controlling settlement and stability of surrounding rock; Developing of lean ore have some influences to the 16th return air filling shaft, especially for 1 500--1 400 m of the shaft; The best project is the first project. This research supply some technique references and safety appraisals for the mining of lean-ore of No.II Mining Jinchuan.展开更多
文摘Coal pillar design has historically assigned a factor of safety(Fo S) or stability factor(SF) according to their estimated strength and the assumed overburden load acting on them. Acceptable Fo S values have been assigned based on past mining experience or a statistical link between Fo S and probability of failure(Po F). Pillar width-to-height(w/h) ratio has long been established as having a material influence on both pillar strength and its potential failure mode. However, there has been significant disagreement on using both factor of safety(Fo S) and w/h as part of pillar system stability criterion, as compared to using Fo S in isolation. This paper will argue that there are valid technical reasons to bring w/h ratio into system stability criteria(other than its influence on pillar strength), as it is related to the post-failure stiffness of the pillar, as measured in situ, and its interaction with overburden stiffness. When overburden stiffness is also brought into pillar system stability considerations, two issues emerge. The first is the width-todepth(W/D) ratio of the panel and whether it is sub-critical or super-critical from a surface subsidence perspective. The second relates to a re-evaluation of pillar Fo S based on whether the pillar is in an elastic or non-elastic(i.e., post-yield) state in its as-designed condition, as this is relevant to maintaining overburden stiffness at the highest possible level. The significance of the model is the potential to maximise both reserve recovery and mining efficiencies without any discernible increase in geotechnical risk, particularly in thick seams and higher depth of cover mining situations. At a time when mining economics are, at best, marginal, removing potentially unnecessary design conservatism is of interest to all mine operators and is an important topic for discussion amongst the geotechnical community.
基金the National Basic Research Program of China (973 Program) under grant 2013CB227905
文摘This paper describes a specific case of mining in a water-rich coal seam in western China. Water inrushes,roof caving and other disasters induced by intensive mining operation could pose great threats to the safety of coal mines. The strata behavior during the high-intensity extraction in the water-rich coal seam is analyzed by employing the numerical simulation method and in situ monitoring. The results show that about 10 m ahead of the workface, the front abutment pressure peaks is at 34.13 MPa, while the peak of the side abutment pressure is located about 8 m away from the gateway with the value of 12.41 MPa; the height of the fracture zone, the first weighting step and the cycle weighting step are calculated to be 45,50 and 20.8 m, respectively; pressure distribution in the workface is characterized by that the vertical pressure in the center occurs earlier and is stronger than those on both ends. Then, the results above are verified by in situ measurement, which may provide a basis for safe mining under similar conditions.
基金Projects 50874105 supported by the National Natural Science Foundation of China20070290532 by the Specialized Research Fund for Doctoral Program of Higher Education
文摘The application of a double-face reinforced retaining wall during road construction can reduce engineering costs, speed road paving and have a good influence on environment. An ABAQUS numerical model of a double-face reinforced retaining wall was built. The influence of surface subsidence induced by mining was considered. A physical model test was also performed in the laboratory on a reinforced retaining wall. The influence of subsidence induced by mining was observed. The numerical results match measurements in the laboratory very well. The vertical pressure on the base of the retaining wall, the horizontal displacement of the wall and the horizontal soil pressure acting on the wall were analyzed. The differential settlement of the reinforced belt and axial forces in the wall were also studied.
文摘Ground movement and deformation caused by underground mining would destroy the constructions located within subsidence area. Constructions would suffer different destructions with different location. The effect of ground deformation caused by underground mining to constructions was analyzed. Analyzed the destructive types of constructions in different ground movement and deformation. Taking a two-storey building for example, the walls were reinforced by computation before mining. To protect the construction the reinforcement measures to the construction before mining were studied.
文摘The stability of branched airflow of ventilation network is guarantee of safety in production of coal mine. Two indexes which stand for the stability of branches of ventilation network in coal mine were put forward in this paper, that are airflow intensity and sta- bility index of branched airflow, The airflow stability of working place was divided into different grade according to the stability index. The conclusion has great significance for safety in production of coal mine.
基金Financial supports for this work, are provided by the National Natural Science Foundation of China (NSFC) & Shenhua Group Corporation Limited key support project of the coal joint fund (U1361203) and NSFC under Grant No. 41501562. Thanks are also due to some participants for rendering assistant cooperation during studies.
文摘As China's energy strategy moving westward, the surface movement and deformation characteristics due to high-intensive coal mining in the windy and sandy region become a research hotspot. Surface movement observation stations were established to monitor movement and deformation in one super-large working face. Based on field measurements, the surface movement and deformation characteristics were obtained, including angle parameters, subsidence prediction parameters, etc. Besides, the angle and subsidence prediction parameters in similar mining areas are summarized; the mechanism of surface movement and deformation was analyzed with the combination of key stratum theory, mining and geological conditions. The research also indicates that compared with conventional working faces, uniform subsidence area of the subsidence trough in the windy and sandy region is larger, the trough margins are relative steep and deformation values present convergence at the margins, the extent of the trough shrink towards the goaf and the influence time of mining activities lasts shorter; the overlying rock movement and breaking characteristics presents regional particularity in the study area, while the single key stratum, thin bedrock and thick sand that can rapidly propagate movement and deformation are the deep factors, contributing to it.
基金Project(2011AA060407) supported by the National High Technology Research and Development Program of China
文摘Rock bursts are spontaneous, violent fracture of rock that can occur in deep mines, and the likelihood of rock bursts occurring increases as depth of the mine increases. Rock bursts are also affected by the compressive strength, tensile strength, tangential strength, elastic energy index, etc. of rock, and the relationship between these factors and rock bursts in deep mines is difficult to analyze from quantitative point. Typical rock burst instances as a sample set were collected, and membership function was introduced to process the discrete values of these factors with the discrete factors as condition attributes and rock burst situations as decision attributes. Dominance-based rough set theory was used to generate preference rules of rock burst, and eventually rock burst laws analysis in deep mines with preference relation was taken. The results show that this model for rock burst laws analysis in deep mines is more reasonable and feasible, and the prediction results are more scientific.
文摘In this paper,the advantage of using numerical models with the strength reduction method(SRM) to evaluate entry stability in complex multiple-seam conditions is demonstrated.A coal mine under variable topography from the Central Appalachian region is used as a case study.At this mine,unexpected roof conditions were encountered during development below previously mined panels.Stress mapping and observation of ground conditions were used to quantify the success of entry support systems in three room-and-pillar panels.Numerical model analyses were initially conducted to estimate the stresses induced by the multiple-seam mining at the locations of the affected entries.The SRM was used to quantify the stability factor of the supported roof of the entries at selected locations.The SRM-calculated stability factors were compared with observations made during the site visits,and the results demonstrate that the SRM adequately identifies the unexpected roof conditions in this complex case.It is concluded that the SRM can be used to effectively evaluate the likely success of roof supports and the stability condition of entries in coal mines.
基金Supported by the National Natural Science Foundation of China for Youth (51004065) the National Basic Research Program of China (2012CB724208)
文摘This paper will present a detailed analysis of the deformation mechanism and stability assessment of the slope through field investigations, numerical modeling and measurements. Field investigation indicated that three thin coal seams encountered large mined-out area at one side and free surface of hill slope at the other side, which lead to the caving of roof strata movement, ground movement and crown crack along the preferred orientations of joints. The three-dimensional numeri- cal modeling study on the case demonstrated that the plasticity failure occurred gradually along with the extension of mined-out area in depth. When the depth of mining reached the verge defined by the seismic prospecting method, a large mount of tension failure occurred on the crown of the slope. The factor of safety was 1.36 calculated by the shear strength reduction technique, which indicated the slope was in stable state. The measurement showed that the residual deformation occurred before 1998 and became stable subsequently, which indicated that the residual deformation almost finished and the slope is in stable state.
基金Supported by Key Projects in the Province Science & Technology Program of Hunan (2009FJ2005)Key Projects in the National Science & Technology Pillar Program in the Eleventh Five-year Plan Period(2008BAB32B01)Aid program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province
文摘In order to settle the mining optimization design and safety problem of the above 1 150 m pillar of No.1 ore-body in No.H Mining Jinchuan, the lean-ore above 1 250 m, the 1 150 m horizontal pillar and the ore-body below 1 100 m regarded as research objects based on the original design project, and nine calculation schemes on different mining sequence and different fill body strength were put forward based on cement-sand ratio of 1 : 4, 1: 12 and 1 : 24. Calculation parameters were got by the back analysis method of field monitoring data, and the FLAC2D program was applied to compute for these schemes, stress and displacement of ground settlement, shaft and stope roof were analyzed, and some conclusions were got. Results show that the intensity of filling body and the mining technique have very important effect on controlling settlement and stability of surrounding rock; Developing of lean ore have some influences to the 16th return air filling shaft, especially for 1 500--1 400 m of the shaft; The best project is the first project. This research supply some technique references and safety appraisals for the mining of lean-ore of No.II Mining Jinchuan.