本文引入了强拉丁方和强拉丁矩的概念 ,证明了当 m≥ 2且为偶数时 ,强拉丁矩的数目是 (2 m) !·2 m ( m -1 ) / 2 ,如果我们不考虑同构 ,有 (2 m ) !· 2 m ( m -1 ) / 2 -(m-1)· 2 m -1 ) ( m -2 ) / 2 个竞赛图 ,且完全...本文引入了强拉丁方和强拉丁矩的概念 ,证明了当 m≥ 2且为偶数时 ,强拉丁矩的数目是 (2 m) !·2 m ( m -1 ) / 2 ,如果我们不考虑同构 ,有 (2 m ) !· 2 m ( m -1 ) / 2 -(m-1)· 2 m -1 ) ( m -2 ) / 2 个竞赛图 ,且完全图 k2 m +1 有 2 m ( m -1 ) /展开更多
文摘本文引入了强拉丁方和强拉丁矩的概念 ,证明了当 m≥ 2且为偶数时 ,强拉丁矩的数目是 (2 m) !·2 m ( m -1 ) / 2 ,如果我们不考虑同构 ,有 (2 m ) !· 2 m ( m -1 ) / 2 -(m-1)· 2 m -1 ) ( m -2 ) / 2 个竞赛图 ,且完全图 k2 m +1 有 2 m ( m -1 ) /