O-nitro-phenol wastewater which contains refractory organic matters can not be degraded by conventional biological methods. In this work, o-nitro-phenol wastewater was effectively treated using magnetization-enhanced ...O-nitro-phenol wastewater which contains refractory organic matters can not be degraded by conventional biological methods. In this work, o-nitro-phenol wastewater was effectively treated using magnetization-enhanced oxidation by NaCIO solutions. The pollutant concentrations in wastewater were 250 mg/L o-nitro-phenol, 2,000 mg/L CODcr and 150 times color. The experimental results show that, using the method in this work, 94.4% o-nitro-phenol, 94.2% CODCr and 100% color can be removed at pH 6, 200 mg charcoal, 8 mL oxidizer, 5 min reaction time in 1000 mL wastewater. The treatment can be enhanced under magnetic field. CODCr and o-nitro-phenol removal can keep unchanged while the reaction time can be reduced to 3 min when the intensity of magnetic field was 60 mT.展开更多
Pool boiling of saturated water on a plain Ti surface and surfaces covered with vertically-oriented TiO2 nanotube arrays(NTAs) has been studied.The technique of potentiostatic anodization using non-aqueous electrolyte...Pool boiling of saturated water on a plain Ti surface and surfaces covered with vertically-oriented TiO2 nanotube arrays(NTAs) has been studied.The technique of potentiostatic anodization using non-aqueous electrolytes was adopted to fabricate three types of TiO2 NTAs distinguished by their anodization time.Compared to the bare Ti surface,the incipient boiling wall superheat on the TiO2 NTAs was decreased by 11 K.Both the critical heat flux and heat transfer coefficient of pool boiling on the TiO2 NTAs were higher than those from boiling on a bare Ti surface.The measured maximum critical heat flux and heat transfer coefficient values were 186.7 W/cm2 and 6.22 W/cm2K,respectively.Different performances for the enhancement of heat transfer by the three types of TiO2 NTAs were attributed to the different degrees of deformation in the nanostructure during boiling.Long-term performance of the nanomaterial-coated surfaces for enhanced pool boiling showed degradation of the TiO2 NTAs prepared with an anodization time of 3 hours.展开更多
文摘O-nitro-phenol wastewater which contains refractory organic matters can not be degraded by conventional biological methods. In this work, o-nitro-phenol wastewater was effectively treated using magnetization-enhanced oxidation by NaCIO solutions. The pollutant concentrations in wastewater were 250 mg/L o-nitro-phenol, 2,000 mg/L CODcr and 150 times color. The experimental results show that, using the method in this work, 94.4% o-nitro-phenol, 94.2% CODCr and 100% color can be removed at pH 6, 200 mg charcoal, 8 mL oxidizer, 5 min reaction time in 1000 mL wastewater. The treatment can be enhanced under magnetic field. CODCr and o-nitro-phenol removal can keep unchanged while the reaction time can be reduced to 3 min when the intensity of magnetic field was 60 mT.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11004054,50825603,U1034004)the Fundamental Research Funds for the Central Universities
文摘Pool boiling of saturated water on a plain Ti surface and surfaces covered with vertically-oriented TiO2 nanotube arrays(NTAs) has been studied.The technique of potentiostatic anodization using non-aqueous electrolytes was adopted to fabricate three types of TiO2 NTAs distinguished by their anodization time.Compared to the bare Ti surface,the incipient boiling wall superheat on the TiO2 NTAs was decreased by 11 K.Both the critical heat flux and heat transfer coefficient of pool boiling on the TiO2 NTAs were higher than those from boiling on a bare Ti surface.The measured maximum critical heat flux and heat transfer coefficient values were 186.7 W/cm2 and 6.22 W/cm2K,respectively.Different performances for the enhancement of heat transfer by the three types of TiO2 NTAs were attributed to the different degrees of deformation in the nanostructure during boiling.Long-term performance of the nanomaterial-coated surfaces for enhanced pool boiling showed degradation of the TiO2 NTAs prepared with an anodization time of 3 hours.