期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
TiCl_4水溶液强水解合成Li_4Ti_5O_(12)的研究 被引量:3
1
作者 李运姣 邱文顺 +1 位作者 习小明 陈盼盼 《矿冶工程》 CAS CSCD 北大核心 2009年第3期78-81,87,共5页
在高LiOH浓度下,以TiCl4和LiOH·H2O为原料,水解并合成Ti(OH)6^2-,控制条件,让Li^+嵌入Ti—O八面体中,直接合成了Li4Ti5O12前躯体。对粉体进行了DSC—TGA、XRD分析,结果表明,热处理温度和时间对合成材料的组成和性能影响... 在高LiOH浓度下,以TiCl4和LiOH·H2O为原料,水解并合成Ti(OH)6^2-,控制条件,让Li^+嵌入Ti—O八面体中,直接合成了Li4Ti5O12前躯体。对粉体进行了DSC—TGA、XRD分析,结果表明,热处理温度和时间对合成材料的组成和性能影响较大,在700~800℃热处理前驱体即可得到纯尖晶石相Li4Ti5O12。SEM分析及电性能检测表明,经过800℃热处理6h的样品结晶度好,颗粒分布较均匀,平均粒径约为1μm;在0.1C充放电倍率下,首次可逆比容量达158.8mA·h/g,11次循环后,仍有133.8mA·h/g。 展开更多
关键词 锂离子电池 尖晶石Li4Ti5O12 强水解 湿化学合成
下载PDF
Effects of Dilute Acid-intensified Hydrolysis on Fermentative Biohydrogen Production Capacity of Maize Stalk 被引量:2
2
作者 孙学习 李俊峰 +3 位作者 李涛 曾召刚 任保增 樊耀亭 《Agricultural Science & Technology》 CAS 2010年第8期1-3,共3页
[Objective] This study was to explore the effects of dilute acid hydrolysis on fermentative biohydrogen production capacity of maize stalk. [Method] Using maize stalks subjected to mechanical disintegration,steam expl... [Objective] This study was to explore the effects of dilute acid hydrolysis on fermentative biohydrogen production capacity of maize stalk. [Method] Using maize stalks subjected to mechanical disintegration,steam explosion and dilute acid hydrolysis as experimental materials,we measured and analyzed the effects of different treatments and particle size of maize stalk were analyzed. [Result] The optimal fermentative biohydrogen production was found under following parameters:pretreatment of 0.8% dilute H2SO4 following steam explosion,particle size of maize stalk of 0.425-0.850 mm,liquid-solid ratio [0.8% H2SO4 (M):stalk (W)] of 10:1. [Conclusion] Post steam explosion,dilute 0.8% dilute H2SO4 intensified hydrolysis on maize stalk could produce fermentative biohydrogen production capacity. 展开更多
关键词 Maize stalk Dilute acid-intensified hydrolysis Fermentative biohydrogen production
下载PDF
A Simple Model to Determine the Trends of Electric Field Enhanced Water Dissociation in a Bipolar Membrane 被引量:2
3
作者 杨伟华 何炳林 徐铜文 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2001年第2期179-185,共7页
This work is concentrated on elucidating the mechanism of the electric field enhanced water dissociation. A simple model was established for the theoretical current-voltage characteristics in water dissociation proces... This work is concentrated on elucidating the mechanism of the electric field enhanced water dissociation. A simple model was established for the theoretical current-voltage characteristics in water dissociation process on a bipolar membrane based on the existence of a depletion layer and Onsager's theory. Particular attention was given to the influence of applied voltage on depletion thickness and the dissociation constant. The factors on the water splitting process, such as water diffusivity, water content, ion exchange capacity, temperature, relative permittivity, etc. Were adequately analysed based on the derived model equations and several suggestions were proposed for decreasing the applied voltage in practical operation. The water dissociation tests were conducted and compared with both the theoretical calculation and the measured current-voltage curves reported in the literature, which showed a very good prediction to practical current-voltage behavior of a bipolar membrane at high current densities when the splitting of water actually commenced. 展开更多
关键词 bipolar membrane electric field water dissociation current-voltage characteristics
下载PDF
An Approach to Underwater Image Enhancement Based on Image Structural Decomposition 被引量:11
4
作者 JI Tingting WANG Guoyu 《Journal of Ocean University of China》 SCIE CAS 2015年第2期255-260,共6页
Underwater imaging posts a challenge due to the degradation by the absorption and scattering occurred during light propagation as well as poor lighting conditions in water medium Although image filtering techniques ar... Underwater imaging posts a challenge due to the degradation by the absorption and scattering occurred during light propagation as well as poor lighting conditions in water medium Although image filtering techniques are utilized to improve image quality effectively, problems of the distortion of image details and the bias of color correction still exist in output images due to the complexity of image texture distribution. This paper proposes a new underwater image enhancement method based on image struc- tural decomposition. By introducing a curvature factor into the Mumford_Shah_G decomposition algorithm, image details and struc- ture components are better preserved without the gradient effect. Thus, histogram equalization and Retinex algorithms are applied in the decomposed structure component for global image enhancement and non-uniform brightness correction for gray level and the color images, then the optical absorption spectrum in water medium is incorporate to improve the color correction. Finally, the en- hauced structure and preserved detail component are re.composed to generate the output. Experiments with real underwater images verify the image improvement by the proposed method in image contrast, brightness and color fidelity. 展开更多
关键词 underwater image image structural decomposition image enhancement RETINEX
下载PDF
A multijunction of ZnIn2S4 nanosheet/TiO2 film/Si nanowire for significant performance enhancement of water splitting 被引量:4
5
作者 Qiong Liu Fangli Wu +5 位作者 Fengren Cao Lei Chen Xinjian Xie Weichao Wang Wei Tian Liang Li 《Nano Research》 SCIE EI CAS CSCD 2015年第11期3524-3534,共11页
Photoelectrodes with a specific structure and composition have been proposed for improving the efficiency of solar water splitting. Here, a novel multijunction structure was fabricated, with Si nanowires as cores, ZnI... Photoelectrodes with a specific structure and composition have been proposed for improving the efficiency of solar water splitting. Here, a novel multijunction structure was fabricated, with Si nanowires as cores, ZnIn2S4 nanosheets as branches, and TiO2 films as sandwiched layers. This junction exhibited a superior photoelectrochemical performance with a maximum photoconversion efficiency of 0.51%, which is 795 and 64 times higher than that of a bare Si wafer and nanowires, respectively. The large enhancement was attributed to the effective electron-hole separation and fast excited carrier transport within the multijunctions resulting from their favorable energy band alignments with water redox potentials, and to the enlarged contact area for facilitating the electron transfer at the multijunction/electrolyte interface. 展开更多
关键词 water splitting photoelectrochemical cells NANOSHEETS atomic layer deposition multi junction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部